
ESD-TR-87-132 SBIR-86-FINAL

Secure Software Verification Tools

COMPUSEC, Inc.
5333 Mission Center Rd., Suite 100
San Diego, CA 92108

10 February 1987

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Prepared For

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
DEPUTY FOR STRATEGIC SYSTEMS
HANSCOM AIR FORCE BASE, MASSACHUSETTS

AD4lgV7^

LEGAL NOTICE

When U. S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented

invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

The technical report titled: "Secure Software Verification Tools "
has been reviewed and is approved for publication.

/»

jf^HN M. MOLLOY, HLt, USA^f
Compusec Contract Manager

FOR THE COMMANDER

(jA^ES D. TAYLOR, Lt £ol, USAF
TS£D SBIR Manager
Deputy for Development Plans

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1a. REPORT SECURITY CLASSIFICATION
Unclassified

1b RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

2b DECLASSIFICATION / DOWNGRADING SCHEDULE

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release; Distribution
Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

SBIR-86-FINAL

5. MONITORING ORGANIZATION REPORT NUMBER(S)

ESD-TR-87-132
6a. NAME OF PERFORMING ORGANIZATION

COMPUSEC, Inc.

6b. OFFICE SYMBOL
(If applicable)

7a. NAME OF MONITORING ORGANIZATION

Hq, Electronic Systems Division (SYC-2)

6c ADDRESS (City, State, and ZIP Code)

5333 Mission Center Rd., Suite 100
San Diego, CA 92108

7b ADDRESS (City, State, and ZIP Code)

Hanscom AFB
Massachusetts 01731-5000

8a NAME OF FUNDING/SPONSORING
ORGANIZATION

Deputy for Strategic Systems

8b OFFICE SYMBOL
(If applicable)

ESD/ SYC-2

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F19628-86-C-0203
8c. ADDRESS (City, State, and ZIP Code)

Hanscom AFB
Massachusetts, 01731-5000

10 SOURCE OF FUNDING NUMBERS
PROGRAM
ELEMENT NO

PROJECT
NO

TASK
NO

WORK UNIT
ACCESSION NO

11 TITLE (Include Security Classification)

Secure Software Verification Tools

12 PERSONAL AUTHOR(S)

13a. TYPE OF REPORT

Final Technical

13b. TIME COVERED
FROM 86-8-10 TO87-2-10

14. DATE OF REPORT [Year, Month, Day)
1987 February 10

15 PAGE COUNT

J£2
16 SUPPLEMENTARY NOTATION

17 COSATI CODES

FIELD GROUP SUB-GROUP

18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
Security, Source Code Verification, Backdoor, Trapdoor,
Timebomb Elimination

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
This Phase I effort demonstrated the viability of automated security verification at the
implementation level. Source code verification capability would represent a technology
advancement that would greatly aid the development of secure software systems. Currently,
source code verification is a tedious process consisting of manual code-to-design
correspondence checking. If an implementer deviates from the secure design, whether
intentionally or negligently, the discrepancy can be detected through manual analysis. This
analysis is only as valid as the skill and expertise of the individual conducting the
correspondence check. Furthermore, manual analysis is typically performed only on selected
code due to its high cost. Therefore, a large secure software system remains vulnerable to
insertion of surreptitious code throughout the implementation phase. This problem can be
alleviated by an automated extension of the formal verification process that can operate
directly on the source code.

(Cont'd on reverse)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT
DUNCLASSIFIED/UNLIMITED CBgSAME AS RPT • OTIC USERS

21 ABSTRACT SECURITY CLASSIFICATION
Unclassified

22a..NAME OF RESPONSIBLE INDIVIDUAL

I John M. Mollov. lLt. USAF

22b TELEPHONE (Include Area Code)

(617) 271-5053
22c OFFICE SYMBOL

ESD/SYC-2.

DO FORM 1473.84 MAR 83 APR edition may be used until exhausted
All other editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE

Unclassified

Unclassified

Cont. of Block 19

Phase I research focused on the evaluation of two different approaches to the
automation of source code:

Source-to-SPECIAL (STOS). STOS is an automated translation of source to
SPECIAL that will function as a front-end for the Hierarchical Development
Methodology (HDM) verification environment.

Source-to-Formulas (STOF). STOF is an automated translation of source
directly to formulas. This innovative concept serves to streamline the
verification process by eliminating the need for a specification language.

COMPUSEC concludes that STOF is the approach of choice; representing innovative
technical progress in the field of software verification.

Unclassified

PREFACE

COMPUSEC's principle objective during the SBIR Phase I effort was to
demonstrate the viability of automated security verification at the
implementation level. This Final Technical Report is a compilation of
the results of the Phase I investigation. Section 1 introduces relevant
source code verification criteria. Section 2 presents the Phase I
investigation approach. Section 3 describes criteria for evaluating the
verifiability of different high level source languages. Section 4
compares the Source-to-SPECIAL (STOS) and Source-to-Formulas (STOF)
translation approaches. Section 5 contrasts three different theorem
provers. Section 6 contains specifications for an STOS and an STOF
Verification Tool. Finally, conclusions and recommendations are
presented in Section 7. Two appendices are included with this Final
Report: Appendix A contains evaluations for all considered candidate
languages; Appendix B takes a short Ada source program through the STOF
translation approach.

iii

TABLE OF CONTENTS

SECTION PAGE

1 INTRODUCTION 1-1

1.1 SOFTWARE THREATS 1-1
1.2 SOFTWARE COUNTERMEASURES 1-1
1.3 FORMAL VERIFICATION OF SOFTWARE 1-2
1.3.1 Security Policy And Verification 1-3
1.3.2 Security Models And Verification 1-3
1.3.3 Language Choice And Verification 1-4
1.4 THEOREM PROVERS 1-4
1.5 VERIFICATION METHODOLOGIES 1-4
1.5.1 FDM 1-5
1.5.2 GYPSY 1-5
1.5.3 HDM 1-6
1.5.4 Methodology Advantages And Disadvantages 1-6

INVESTIGATION APPROACH 2-1

3 CANDIDATE LANGUAGE EVALUATIONS 3-1

3.1 LANGUAGE CHARACTERISTICS 3-1
3.1.1 Standardization 3-1
3.1.2 Code Structure 3-2
3.1.3 Ambiguity 3-3
3.1.4 Visibility 3-3
3.1.5 Data Representation 3-3
3.1.6 Interfaces 3-4
3.2 CANDIDATE LANGUAGE EVALUATION APPROACH 3-4

4 TRANSLATION APPROACH EVALUATIONS 4-1

4.1 STOS APPROACH 4-1
4.1.1 Translation Correspondence 4-2
4.1.2 Assignment Statements 4-4
4.1.3 Conditionals and Iteration 4-6
4.1.4 Parameters and Function "RETURN" Statements . 4-10
4.2 STOF APPROACH 4-12
4.2.1 Assignment Statements 4-14
4.2.2 Conditionals And Iteration 4-17
4.2.3 Parameters and Function "RETURN" Statements . 4-22

5 THEOREM PROVER EVALUATIONS 5-1

5.1 BOYER-MOORE 5-1
5.2 SHOSTAK 5-2
5.3 COMPUSEC 5-2

6 SOURCE CODE VERIFICATION TOOL SPECIFICATIONS ... 6-1

6.1 STOS CODE VERIFICATION TOOL 6-1
6.1.1 SOURCE Subset Handled By STOS 6-1
6.1.2 SPECIAL Subset Used By STOS 6-4
6.1.3 STOS Cross-Compiler Specification 6-12
6.1.A STOS Ada Security Analyzer 6-13
6.1.5 STOS Labeler 6-19
6.1.6 STOS Propagator 6-20
6.1.7 STOS SPECIAL Generator 6-22
6.1.8 STOS Automated Tracer 6-26
6.2 STOF CODE VERIFICATION TOOL 6-26
6.2.1 SOURCE Subset Handled By STOF 6-27
6.2.2 Proof Of Correctness Formulas 6-31
6.2.3 STOF Ada Security Analyzer 6-48
6.2.A STOF Security Graph Generator 6-A8
6.2.5 STOF Verification Condition Generator 6-51
6.2.6 STOF Environment Support Tool 6-57

7 CONCLUSIONS AND RECOMMENDATIONS 7-1

7.1 CONCLUSIONS 7-1
7.2 RECOMMENDATIONS 7-3

8 REFERENCES 8-1

APPENDIX A CANDIDATE LANGUAGE EVALUATIONS A-l

A.l UNWEIGHTED CRITERIA VALUE EXPLANATIONS A-2
A.2 UNWEIGHTED LANGUAGE EVALUATIONS A-6
A.3 WEIGHTED LANGUAGE EVALUATIONS A-28
A.A SUMMARY LANGUAGE EVALUATION A-31

APPENDIX B SAMPLE STOF EXAMPLE B-2

B.l ADA SOURCE CODE B-2
B.2 GRAPH OF GCD GENERATED BY STOF B-2
B.3 PROOF OF CORRECTNESS OF GCD B-2

GLOSSARY G-l

VI

LIST OF FIGURES

FIGURE PAGE

6-1 STOS Cross Compiler 6-14
6-2 Lexical Analyzer 6-15
6-3 STOS Parser 6-17
6-4 Labeler 6-20
6-5 Propagator Components 6-22
6-6 Special Generator Components 6-24
6-7 STOS Cross Compiler 6-28
6-8 Security Graph Generator Components 6-49
6-9 MLS Flow Analyzer Components 6-52
6-10 Proof of Correctness Analyzer Components 6-54
6-11 Formatter Components 6-58
6-12 Environment Support Tools Components 6-59

B-l STOF Graph of GCD B-3

LIST OF TABLES

TABLE PAGE

3-1 Summary of Language Evaluation Results 3-5

6-1 Ada Reserved Words Handled by STOS
6-2 SPECIAL Constructs Handled by STOS
6-3 Ada Reserved Words Handled by STOF

6-3
6-11
6-30

vii

SECTION 1

INTRODUCTION

1.1 SOFTWARE THREATS

During software development, subversive software may be inserted that
threatens the fielded system's mission. This type of software attack
includes: Trojan horse, virus, worm, covert channel (including timing
and storage channels), time bombs, trap doors, and backdoors. These
attacks fall into one of the following threat scenarios:

• System compromise: Covert channels (timing or storage)

• Corruption of system information: Trojan horse, virus, worm

• Delay or denial of system services: Time bomb, virus

• Misappropriation of system resources: trapdoors, backdoors

1.2 SOFTWARE COUNTERMEASURES

Currently, the development of secure applications requires that special
countermeasures be used to protect against subversion in the software
development environment. Typical countermeasures combine the of use of
cleared software developers, blind purchase of commercial off-the-shelf
software, and two-person control. These countermeasures address certain
threat scenarios, but do not entirely preclude or prevent the existence
of threat mechanisms within the software itself.

Assurance that subversive software cannot succeed in the software
development environment can only be achieved by applying comprehensive
security awareness and analysis throughout a project's life cycle.
Verified development environments can be expected to become a requirement
for future government software development projects. Methods of
analyzing security-relevant aspects of software design must become

1-1

embedded in the software engineering methodology. Software developers
and their managers require early feedback about security design flaws in
order to affect design improvements in a timely, cost-effective manner.

1.3 FORMAL VERIFICATION OF SOFTWARE

When software threat mechanisms are characterized according to rules
specified by a security policy, formal verification can be applied to
assure that software does not violate those rules. Automated formal
verification is a rigorous process that provides feedback in the form of
failed proofs that point to questionable software modules. Formal
verification has been used for two major categories of security-relevant
proofs:

• Information Flow. Proofs regarding information flow can
ascertain whether a program causes an insecure data flow to
occur. [1]

• Proof-of-Correctness. Proofs regarding program correctness
ascertain whether the preconditions of some processing (X) plus
the processing of (X) imply the postconditions of (X). [2]

Several factors affect the degree of assurance that can be obtained by
using formal verification techniques:

• Security Policy. To what extent is the security policy able to
capture all security relevant rules?

• Security Model. To what extent is the security model able to
capture the essence of security policy statements in mathematical
formalisms?

• Language Choice. To what extent can the specification or
implementation language express software functionality in a
manner suitable for static analysis?

• Theorem Prover Choice. What is the relative strength of the
theorem prover to be used? What performance and time costs are
associated with its use?

• Verification Methodology Choice. Is the verification methodology
endorsed by the National Computer Security Center (NCSC)? Or,
does the methodology represent innovative technology improvement
suitable for endorsement for use on military projects?

1-2

1.3.1 Security Policy And Verification

Several military standards specify software security requirements:

• DoD Directive 5200.28 - Security Requirements for ADP Systems

• DoD Directive 5200.28M - ADP Security Manual

• AFSCP 207-1 - System Security Engineering Management

• AFR 205-16 - Automated Data Processing (ADP) Security Policy
Procedures and Responsibilities

• AR 380-380 - Automated System Security

• OPNAVINST 5239.1A - ADP Security Program

These documents represent several different styles of characterizing
threats and/or the mechanisms required to address those threats.

Another document, DoD 5200.28-STD, "Trusted Computer System Evaluation
Criteria," classifies systems into four broad hierarchical divisions of
enhanced security protection. These criteria form a basis for the
evaluation of the effectiveness of security controls built into software.

1.3.2 Security Models And Verification

Formal verification analysis is performed with respect to a mathematical
security model. This model represents the security policy to be enforced
on the system being verified. The totality of protection mechanisms
within the system is called its trusted computing base (TCB). The TCB
can be mapped to mathematical axioms that formalize security policy
rules.

Security policy statements can be precise and system-specific, or can be
sufficiently broad to relate to whole classes of secure systems. The
security policy standards referenced in the previous section relate to
all military applications and describe security policy requirements that
must be formally expressed in a mathematical security model in order to
be suitable for formal verification.

1-3

1.3.3 Language Choice And Verification

Languages differ greatly with respect to ease of translation to
intermediate specification languages or formulas. They also differ
significantly in their suitability for static security analysis. In
general, languages that are unambiguous and restrict information flow are
more favorable for translation and for verification. This subject is
discussed in further detail in Section 3. Appendix A provides the
results of the language evaluation conducted for this Phase I effort.

1.4 THEOREM PROVERS

Theorem provers can be evaluated for their proving capabilities,
performance, user interaction, and report generation. An ideal theorem
prover is one that (1) has extended proving capabilities (i.e. handles
induction, propositional logic, and user-defined recursive functions),
(2) has a relatively fast performance r^ite, (3) is user-friendly, and (4)
produces clear, well-organized reports. In large systems requiring
formal verification, these characteristics are vital to ensure complete,
correct, and understandable results.

Formula notation required as input for each theorem prover also differs.
For example, the input for Boyer-Moore theorem prover is lambda calculus
[3] in prefix format, while other systems use standard predicate calculus
in infix format. [A],[5] However, the specific input format chosen makes
little difference to the implementation of the theorem prover. Section 5
contains further information on existing theorem provers.

1.5 VERIFICATION METHODOLOGIES

Three methodologies have been supported by the NCSC for use on military
contracts:

• Formal Development Methodology (FDM)
• GYPSY
• Hierarchical Development Methodology (HDM).

1-4

1.5.1 FDM

FDM consists of a set of tools and languages, as follows:

• The Ina Jo language for writing specification and requirements

• The InaMod language, an extension of the Ina Jo language, for
writing assertions about programs

• The Ina Jo processor, for examining specifications and generating
logical assertions

• The Interactive Theorem Prover (ITP), for assisting users in
proving the logical assertions generated by the Ina Jo processor.

• An ITP post-processor, for generating transcript files of
completed proofs. The post-processor eliminates all steps not
actually used in a proof, converts the contents of the file from
the ITP internal representation, and reformats the text.

FDM provides the ability to map various levels of requirements and design
refinement within a system to the next higher level. Its purpose is to
prove adherence of a system specification to a set of logical relations,
along with proving consistency between different levels of specification.
FDM has been used on several significant multi-level secure systems. FDM
has been applied to AUTODIN II, the Secure Transacting Processing
Experiment (STPE), a Job Stream Separator (JSS), a kernelized IBM VM
(KVM), a Computer Operating System/Network Front-End (COS/NFE), and the
Secure Release Terminal. [6,IV]

1.5.2 GYPSY

GYPSY is an integrated system of methods, languages, and tools for
building formally verified software systems. The GYPSY methodology
provides capability for both system specification and implementation
within the verification environment. Its purpose is to support proofs
about the correctness of system specifications and programs. In
addition, An information flow tool is under development. The GYPSY
verification environment includes a GYPSY database manager, a parser, an
edit interface, a verification condition generator, the Bledsoe theorem
prover, a program optimizer, a Bliss translator, and an Ada translator
that operate on specifications developed in GYPSY.

GYPSY has been used to verify several experimental applications,
including message switching systems, selected components of an air
traffic control system, communications protocols, the trusted
applications for SCOMP [7], and the monitoring of inter-process
communication. [6,11]

1-5

1.5.3 BDM

HDM was developed as an aid to design, implementation, and verification
of secure software systems. Two dialects of HDM exist and are commonly
called "old HDM" and "Enhanced HDM" (E-HDM). COMPUSEC has used old HDM
successfully on the Army's Regency Net project and the Navy's AN/GSC-40,
ANGSC-40A, and ANGSC-40B Command Post Terminals. HDM is a highly
effective method for analyzing systems with respect to information flow.
The toolset includes the language SPECIAL, the MLS formula generator for
multilevel security analysis, and the Boyer-Moore theorem prover.

Although HDM has been used to formally verify a number of existing secure
systems such as SCIACT and SCOMP [7], questions have surfaced concerning
its continued endorsement for use on new systems. In September 1986, the
HDM toolset was removed from the NCSC's Endorsed Tools List
(ETL). [8] This action occurred for two reasons: first, funds are
limited for supporting verification toolsets; second, an enhancement to
the toolset is currently being developed by SRI International. E-HDM
uses the Shostak rather than Boyer-Moore theorem prover and will operate
on a substantially different version of SPECIAL. Revised SPECIAL is
purported to be able to progressively specify program design to finally
arrive at a specification that is a small unimplemented subset of Pascal.
HDM is being used to reason about the specifications of SIFT, an
experimental operating system for a fault-tolerant computer. To date,
NCSC has not decided whether to support either or both HDM and E-HDM on
the ETL. [6,V]

1.5.4 Methodology Advantages And Disadvantages

Use of any of these verification methodologies for security theorem
proving has advantages and disadvantages. One advantage is that these
methodologies already exist and are accredited by the NCSC for use on
military projects. However, each toolset contains some intrinsic
limitations in functionality or completeness that must be supplemented
with additional verification techniques.

FDM has been criticized for a lack of both formal description of the
language and lack of formal logic for reasoning about Ina Jo
specifications. The Ina Jo Theorem Prover has been described as
restrictive. [6,IV]

Although GYPSY supports BLISS or Ada as an implementation language,
implementable code can only be reached after exhaustive specification
using the GYPSY language. For any project using more conventional
program design languages, the intermediate step of translating this into
GYPSY input language would be necessary before verification efforts could
continue. Also, although GYPSY has been used on several experimental
projects, it has not yet developed a significant track record on fielded
systems. 16,11]

1-6

COMPUSEC has developed several support tools for use with HDM. These
include a Bubble-to-SPECIAL (BTOS) tool for translating Data Flow
diagrams into HDM's SPECIAL [9] and an Ada-to-SPECIAL (ATOS) translator
that translates Ada program design language (PDL) into SPECIAL. These
tools have been extremely useful. However, program designers have often
expressed a preference for obtaining security feedback about code rather
than just design. This capability currently does not exist.

1-7

SECTION 2

INVESTIGATION APPROACH

This outline represents the approach that was followed during this Phase
I effort to investigate secure source code verification.

I. Perform Candidate Language Evaluations. A method was developed
for rating a cross-section of 11 different languages on their
suitability for static security analysis and ease of translation.

II. Perform Translation Approach Evaluations. Two candidate
translation approaches were evaluated by attempting translations
of several generic language constructs in two different
languages.

• Evaluate Source-to-SPECIAL (STOS) Approach. STOS is an
automated translation of source to SPECIAL that would
function as a front-end for the HDM verification environment.

• Evaluate Source-to-Formulas (STOF) Approach. STOS is an
automated translation of source directly to formulas. This
concept streamlines the verification process by eliminating
the need for a specification language.

III. Perform Theorem Prover Evaluations. The relative capabilities
and ease of use of three different theorem provers was
considered:

• Boyer-Moore Theorem Prover
• Shostak. Theorem Prover
• COMPUSEC Theorem Prover

IV. Develop Source Code Verification Tool Specifications. Functional
specifications were developed for two tools that, if developed,
could implement the two evaluated approaches.

2-1

• Source-to-SPECIAL (STOS) Verification Tool
• Source-to-Formulas (STOF) Verification Tool

V. Form Conclusions and Recommendations. Based on the accumulated
data, the two source code verification approaches were compared
and one was recommended as more favorable.

2-2

SECTION 3

CANDIDATE LANGUAGE EVALUATIONS

3.1 LANGUAGE CHARACTERISTICS

Characteristics inherent to the syntax or semantics of a language can
favorably or unfavorably impact the translation of the language for
static verification analysis. This impact applies to analysis of both
information flow and correctness. In general, languages that are
unambiguous and that clearly show control of information flow represent
better candidates for secure software verification. The following six
categories of characteristics that impact static verification analysis
have been identified.

• Standardization
• Code Structure
• Ambiguity
• Visibility
• Data Representation
• Interfaces

3.1.1 Standardization

Languages that have a well-defined standard are desirable for
translation. Rigorous standards clearly specify syntax and semantics of
a language no matter which implementation is chosen. Clear specification
promotes automated translation of that language for static analysis.
Examples of organizations that promote language standards include the DoD
(MIL-STD), ANSI, and ISO. In addition, several less formal standards
have developed where one author has become the defacto reference for
implementations of a particular language.

3-1

3.1.2 Code Structure

The following features affect code structure and are important to
security verification analysis.

• Process/task use (Modularity)
• Flow control
• Statement evaluation order
• Recursion
• Backtracking

Modularity of process/task simplifies the problem of verification of
large software systems by breaking these systems down into meaningfully
separate logical (and possibly physical) components. In addition,
modularity tends to reduce the amount of component visibility (e.g.,
variables, static structures, and types), which can effectively scope the
verification effort into smaller, more manageable components.

All languages have some mechanisms for flow control. Control structures
may be difficult or easy to use. In addition, these structures may be
difficult or easy to translate for verification purposes. Information
flow resulting from conditional statements such as "if" and "case" must
be captured and represented in the source code verification translation
process. "Case" statements are useful because they group related control
flow into a single construct.

Statement evaluation order must be deterministic and unambiguous in order
to be suitable for translation and static analysis. It is important that
the order of evaluation of a single statement can be determined in any
context in which it is used.

Recursion is an unfavorable language characteristic during verification
[10]. Information flow in recursive processes can be difficult to trace,
which inhibits static analysis. On the other hand, loops are often used
in languages that do not depend upon recursion. Information flow within
loops is more easily traced.

Backtracking is a feature of some languages that is useful for functional
reasons, but increases the difficulty of performing static analysis on
the resulting code. The repeated scans involved with backtracking, when
used by a language compiler, may cause an infinite loop condition. This
makes it difficult to perform a meaningful static security analysis.
[11]

?-2

3.1.3 Ambiguity

Scoping, type coercion, and parameter passing can be ambiguous language
characteristics. Scoping mechanisms make it easier to resolve names used
in the code. Type checking is desirable, but some type coercions can
introduce ambiguity into the information flow. If type coercion
capability exists in a language, the rules for its application must be
unambiguous in ordar to support static analysis. It is preferable if
type coercion is not allowed.

Procedures and functions encapsulate operations into a single reusable
block format. They provide a level of abstraction that potentially
reduces the ambiguity of code. In addition, procedures and functions
decrease the number of necessarily visible variables. Correct use of
procedures and functions makes static verification analysis easier.

Languages with scoping rules that restrict the visibility of entities, do
not allow coercion, and have clearly defined mechanisms for parameter
passing are desirable. Such rules limit information flow possibilities
in any section of code. Because all information flow within a system
must be checked during formal verification, these characteristics will
significantly decrease the difficulty of the static source code
verification analysis.

3.1.4 Visibility

The use of hierarchies, data hiding, and data flow constructs impacts the
visibility of data within source code. Data typing constructs in a
language can cluster individual entities into a single entity type. This
level of abstraction facilitates grouping entities with similar uses or
contexts. Grouping may then reflect hierarchies within entities.
Grouping can also be used to "hide" data, effectively restricting its
visibility. Data hiding can be extremely useful in reducing the number
of possible information flows. Ultimately, security verification depends
on identification of source and destination of all data flows. It is
possible for certain language constructs to obscure this information
flow.

3.1.5 Data Representation

Abstract data types and data separation play a role in data
representation. Arrays, records, and pointers are all vital language
features. Although these constructs can be avoided, they prove useful in
most applications. Languages written without these features (such as
assembly language) may provide the advantage of being compact and fast,

3-3

but they lose some measure of readability and reliability. Furthermore,
the complexity of an application written in higher level code increases
unnecessarily if these constructs are not used. Distinct separation of
code and data is also desirable. Self-modifying code is to be avoided.

3.1.6 Interfaces

An ideal language has easy access to extensive operating system (OS)
services, explicit definition of all interfaces to all components, a rich
I/O construct set with direction-specific information, and a
comprehensive user environment. These attributes also support static
security analysis.

3.2 CANDIDATE LANGUAGE EVALUATION APPROACH

Eleven candidate languages were evaluated. [12,13,14,15,16,17,18,19,20]
The following candidate languages were chosen in order to form a
representative cross-section of commonly available high-level languages.

Ada
BASIC
C
Forth
FORTRAN
Lisp
Modula
Pascal
PLM
PROLOG
SN0B0L

First, a list was compiled of language attributes impacting code
verifiability. (See categories of characteristics described in Section
3.1). These language characteristics and attributes determine if or how
well code can be translated into either SPECIAL or formulas. Each
language was analyzed for the presence of each attribute. If present,
its style of use was then analyzed for its impact on static verification
analysis. Analysis resulted in the assignment of a value between 0 and 3
for each attribute, where 3 indicates the most suitable use of the
characteristic for static verification analysis. This unweighted
criteria rating scheme is provided in Appendix A.1. Results of using
this rating scheme are provided in Appendix A.2.

3-4

Table 3-1. Summary of Language Evaluation Results

+=========• *======== - ==== = ==== ==== == = = ==== ==== = = = = ===== ==== ===== = = = 4

+ = = = = = = = = = :=. »s»»»++»i4 ===+ = = = 4 ===+ = = = 4 = = = -f = = = 4 = = = 4 = = = 4 = = = 4

| CRITERIA 11 A | M | P 1 P 1 c 1 L 1 P 1 P 1 P 1 s 1 B |

1 D 1 o 1 A !•• 1 I R | o 0 | N A I
1 A 1 D I s 1 M s 1 o 1 R | R | o 1 s

u 1 c ! p L I T I T | B I
L 1 A I o 1 R 1 H o 1 c
A L G A I

N
L

+••»••»**: inunu+tnaH =• = = -» = = = 4 = = = 4 = = = 4 = = =4 = «== +

| TOTALS ||270 242 222 214 198 193 165 163 154 | 151 139|

| STANDARDIZATION ||
(10) |15 3 4 3 2 1 1 3 1 1 1

| CODE STRUCTURE 1|
(20) ||57 51 41 48 43 30 49 33 48 26 28

| AMBIGUITY
(20) ||60 60 56 52 50 46 46 40 28 54 46

=================«==++==== ===== ==== = = = == = i = = = = : = = = = = ===== KCBB1 = ==== =: = — — — : =====

| VISIBILITY ||
(15) ||45 45 41 41 36 39 25 36 25 30 | X5

| DATA REPRESENTA- ||
| TI0N (15) ||A0 40 40 | 25 | 30 | 35 | 25 i 20 | 35 | 20 115

| INTERFACES
(20) ||53 |43 |40 |45 |37 |42 119 | 30 117 | 20 |34

3-5

In addition to considering suitability for static verification analysis,
the importance of each language attribute in the translation process was
also evaluated. This was done by dividing 100 points among the six
identified criteria categories, and then correlating each allotment to
individual attributes within the criteria categories. This system
reflects the relative positive impact of each attribute on the
translation process. A higher weighting indicates higher importance.
Results of application of this weighted rating can be found in Appendix
A.3. A summary of language evaluation results is listed in Table 3-1 and
in Appendix A.4.

Results of this language investigation point to Ada as the language most
suited for code verification. Ada ranked highest in all of the criteria
categories used. Ada is governed by a rigorous standard found in
MIL-STD-1815A. [12] It is a highly structured language with constructs
limiting ambiguity. Strong visibility and data representation rules
exist in the language. Ada's weakest characteristics for use in security
translation include data separation, I/O constructs, and user
environments. However, Ada still ranks average or above average in these
categories.

3-6

SECTION 4

TRANSLATION APPROACH EVALUATIONS

4.1 STOS APPROACH

This chapter delineates a set of rules for translation of C and Ada
source code to SPECIAL. This translation is a reduction of the source
code to a high level formal description of source information flow. The
rules might need to be tailored to applications where specification
conditions exist that alter proof conditions. For example, in
applications that have known properties such as hardware security
features, these specifications may not accurately reflect true system
characteristics. However, the intention here is to provide general
translation rules for applications operating in generic environments.

SPECIAL is a flexible language, intended as a specification for a wide
range of applications and programming languages. In the following
translation description, specific type, parameter, and assertion sections
have been defined. The SPECIAL produced is intended to capture
information flow, and does not represent functionality (although SPECIAL
is capable of doing so).

The following constructs are described to aid in the understanding of the
resulting translations. A number of these terms are inherent to the
SPECIAL language (e.g., OFUN, VFUN, NEWALUE, MODULE). Also described
are COMPUSEC-defined parameters (e.g. COND, FUNCTION, CONSTANTS), which
aid in the use of SPECIAL as an MLS information flow analysis language.

• SPECIAL Constructs

- OFUN. Represents typeless procedures - may be given a
subject label.

- VFUN. Represents variables (i.e. integers, characters,
arrays, etc.) - may be given an object label.

- NEWALUE. NEWALUE is the SPECIAL equivalent of an
assignment. It represents flow of information from an
expression to either an object or variable. The symbol "'"

4-1

means NEWALUE, the symbol PN depicts the number of entities
in the function.

Example:

'<data> = FN(<data>, <data>, ... <data>)

• COMPUSEC Defined Parameters

- COND. This is the equivalent of a branch conditional. It
shows information flow from variables in the conditional
expression to the block of statements under the conditionals
flow control.

Example:

CONDl(<data>), C0ND2(<data>, <data>), ... CONDN(<data>,
<data>, ..<data>)

- FUNCTION. This is the equivalent of a generic function that
is dependent upon input data. It appears on the right hand
side (rhs) of expressions, and represents flow of information
from every input to the left hand side (lhs).

Example:

Fl(<data>), F2(<data>, <data>), ... FN(<data>, <data>, ...
<data>)

- CONSTANTS. These represent placeholders and are intended to
show correspondence between SOURCE and SPECIAL. LLLLL is a
generic label placeholder that is used specifically for a
data item's security label information.

Example:

K!
true
false
LLLLL

4.1.1 Translation Correspondence

When translating a source language to formulas or to a specification
language, continuity must be maintained between the resulting translation
and the functionality represented in the source code. If the translation

4-2

accurately represents the functionality of a given source, an observer
can easily ascertain the correspondence between source and translation by
contextual clues. Also, if the resulting translation maintains the same
identifier names as the source, an observer can easily find the
correspondence between the source and the translation.

However, practical limitations exist in using functionality to represent
correspondence. Consider the representation of functionality in
formulas. This representation wouDd include extensive comments and
formatting that are not needed in the proof process. The resulting
translation would be weighted with extra text that must be processed by
tools and stored in machine memory. Hence, much memory space and CPU
time would be wasted.

Naming conventions are a more useful method of maintaining correspondence
during the translation process. They provide a means of isolating the
range of possible source that a given translation represents. This range
could then be examined to discover with certainty the exact
correspondence. This could be accomplished without adding excessive
overhead (i.e., space, CPU time) to the translation process.

The following rules describe the naming convention that will be followed
in all subsequent translations. This method uses names to provide
contextual clues that indicate source-to-translation correspondence.

• Each identifier contains the name of its declaring block.

• The "#" symbol separates subparts of a name.

• An increasing integer extension is appended to each instance of a
data item to disambiguate it from other instances.

Translation of a source identifier to translation identifier will include
the name of the declaring block. These entities are readily
ascertainable in ALGOL-based languages like Ada and C. An extension
describing the scope of each declared item will be created in the form of
an increasing integer. In the translation, data item names will be
written with their extension to remove any ambiguities (i.e., DATAO,
DATA1, .. DATAn). Extensions involving subparts of a data name will
also result from concatenating the current extension with each new
subprogram body name as entered. When a subprogram body is exited, the
corresponding extension is removed. Sharp signs separate subparts of a
name, exactly as the dot character in Ada or C. Following this
convention, if the subprogram or variable has been declared at the
outermost scoping level, no changes to its name will be made.

For example, the extension for a function "B" declared in an unnested
subprogram "A" would be "A#B". If variable "C" is declared within
function "B," it will be represented as "A#B#C" (this conforms to the Ada
naming convention).

4-3

4.1.2 Assignment Statements

• Expression to Scalar Type

Statement

Ada I

x := 42 * y - (z / w); j x = 42 * y - (z / w)

Translation Rule

Information flows between every Lerm on the rhs of an assignment
statement to every term on the lhs of that assignment.

Translation Results

'x(LLLLL) = F4(K!,y(LLLLL),z(LLLLL),w(LLLLL));

Structured Type to Same Structured Type

Statement

Ada | C

type smallrec is
record

x : integer;
y : character;

end record;

type stuffrec is
record
otherstuff : smallrec;
a,b : integer;

end record;

recl,rec2 : stuffrec

reel := rec2;

Translation Rule

typedef struct smallrec {
int x;
char y;

}

typedef struct stuffrec {
struct smallrec

otherstuff;
int a,b;

}

struct stuffrec recl,rec2;

reel = rec2;

The assignment of a variable of structured type to another
variable of the same structured type will produce as many
NEWALUE statements as there are scalar types making up the
structured type.

4-4

Iransla'-ior. results

'recl*otherstuff#x(LLLLL) = Fl(rec2#otherstuff#x(LLLLL));
'recl#otherstufl#y(LLLLL) = Fl(rec2#otherstuff#y(LLLLL));
'recl#a(LLLLL) = Fl(rec2#a(LLLLL));
'recl#b(LLLLL) = Fl(rec2#b(LLLLL));

Array Components

Statement

Ada

type stuffrec is
record

a,b : integer;
end record;

type twinarray is
record
x,
y: array (1..10) of

integer;
end record;

type stuffarray is
array (1..20) of

stuffrec;
reel : stuffarray;
rec2,rec3 : twinarray;

recl(u).a := 13 *
rec2.x(v) - rec3.y(w);

Translation Rule

typedef struct stuffrec {
int a,b;

} stuffarray[10];

typedef struct twinarray {
int xll0],y[10];

)

struct stuffarray reel;
struct twinarray rec2,rec3;

recl[u].a = 13 *
rec2.x[v] - rec3.y[w];

If a variable of structured type has array type components, then
any identifiers that are used to index the array are extracted.
Information flow is shown from the array indices on either side
of the assignment statement to the variable on the lhs of the
assignment.

Translation Results

'recl#a(LLLLL) = F6(u(LLLLL),K!,rec2#x(LLLLL),v(LLLLL),
rec3#y(LLLLL),w(LLLLL));

Discussion

Arrays, records, and pointers are different ways of representing
groups of data items. They present a problem in translation

4-5

because these constructs rarely map to a single unit entity, and
are often composed of many multi-component entities. Information
flow from using these constructs is non-trivial, and often
depends on dynamically changing information. In order for
SPECIAL to represent these constructs, the notion of offsets or
array indices must be used. The index value used therefore
becomes part of the potential information flow in any array
operation.

RULE: Information flow from the index always flows
whether or not the index exists on the lhs or rhs.

to the lhs

Records must be handled similarly, where lowest level components
represent offsets indexed into a data structure. However, unlike
array indices, records are usually static.

RULE: Break records into component level information. No
information is really stored at the top level. This is a
structural device. Actual variables can be seen as components
within this structure.

Pointers combine aspects of both arrays and record structures.
There is no clear rule for handling pointers. A pointer could
possibly be shown as a base plus offset.

4.1.3 Conditionals and Iteration

"If" Statements

Statement

Ada C

if y > z * aray(i)
ii == jj;

else
kk := 11;
vv := ww;

then if (y > (z * aray[i]))
(

ii = jj;
} else {
kk = 11;

end if; vv = ww;
}

Translation Rule

Information flows from all identifiers appearing in the condition
part of the "if" or "else if" statement to all outputs of any
statements appearing in the "then" or "else" part of the "if"

4-6

statement. All identifier.-; appearing in the condition are
collected, an implication statement is generated with these
identifiers placed on the lhs, and all statements vithin the
scope of the "if" are placed on the rhs.

Translation Results

(C0ND4(y(LLLLL),z(LLLLL),aray(LLLLL),i(LLLLL)) =>
('ii(LLLLL) = Fl(jj(LLLLL)) AND

'kk(LLLLL) = Fl(11(LLLLL)) AND
'vv(LLLLL) = Fl(vw(LLLLL))

));

Discussion

SPECIAL has no inherent limitations for representing
conditionals. In general, easier translations result if runtime
processing of conditionals is deterministic. A language with a
known and static evaluation process at runtime will be more
easily translated than one with an unknown or dynamic runtime
evaluation process. As an example of non-deterministic
processing, consider the following C conditional:

if ((x = y) && (k == z)) { ... }

In this example, information flows from y to x, and from y and x
to the statements within the conditionals block. Information
does not necessarily flow from k and z to the statements within
the conditionals block because this part of the expression is
only evaluated if "(x = y)" is true. Because C short-circuits
conditional expression evaluation, actual information flow may
only be known at runtime. Information therefore becomes
dependent upon partial evaluation of complex expressions.
Dynamic or unknown evaluation processes of conditional
expressions may cause some inaccuracy in the representation of
information flow. These inaccuracies are cosmetic in the sense
that they are not faults but merely fail to show the true nature
of the information flow possibilities.

Clearly, a language with static conditional expression evaluation
makes for a translation with more accurate representation of
information flow. In this case, the easiest solution is to
ignore the problem. Short-circuiting conditional expression
evaluation can only lessen the total information flow to
statements within the conditional block. Therefore, no flow will
be lost by not representing short-circuiting.

4-7

"Case" Statements

Statement

Ada C

case (x) of switch (x) {
when 1 => case 1:

i == j; i = J;
m := k; n, = k;

break;
others = => default:
c := n; c = n;

break;
end case; }

Translation Rule

The "case" construct in ALGOL-based languages represents, as a
translation problem, a special case of a sequence of "if"
conditionals. It may be represented in the same manner as a
series of "if" statements, with the same conditional expression.

Translation Results

(CONDl(x(LLLLL)) =>
('i(LLLLL) = Fl(j(LLLLL)) AND
'k(LLLLL) = F1(1(LLLLL)) AND
'm(LLLLL) = Fl(n(LLLLL))

))

• Conditional Loops

Statement

Ada C

stuff: stuff:
loop do {

x := x + 1; x += 1;
exit when x > A2; if (x > 42) break;

end loop stuff; } while (1 == 1);

Translation Rule

If a name for the loop exists, it will be extracted. If there
are no conditions for the loop (however, there may be an "if"
statement that leads into an unconditional exit), then the
statements within the loop will be processed as if the loop did
not exist.

4-8

Translation Results

(C0ND2Cx(-JLLLL),K!) => ('x(LLLLL) = F2(x(LLLLL) ,K!)));

Iterative Loops

Statement

Ada C

for a in b..42
loop

y := a * y;
end loop;

for (a = b; a <=
y *- a;

42; a++)

Translation Rule

Any identifiers appearing in the iteration scheme of a "for"
statement, in the conditional part of a "while" statement, or as
conditions for loop exit will be collected and put on the lhs of
an implication, with the rhs being the translation of any
statements within the loop.

Translation Results

(C0ND3(a(LLLLL),b(LLLLL),K!) =>
('y(LLLLL) = F2(a(LLLLL),y(LLLLL)));

Discussion

Loops are not a natural construct in SPECIAL. Loops
are meaningless, because SPECIAL is intended for sta
In addition, loops may present problems in transla
they contain potential data flow from control var
data items being processed within the loop. Contr
cannot simply be defined as the loop counter
statement, or the Boolean in a "while" conditional.
that can cause termination or affect the pri
variables can be considered to be able to control th
some cases, loops may be best represented as
statements.

in SPECIAL
tic analysis,
tion because
iables to all
ol variables
in a "for"
Any variable
mary control
e loop. In

conditional

In some languages, such as Ada and C, loop execution may be
altered using "break," "continue," or other instructions. These
instructions may in turn depend upon conditionals that are not
apparently part of the loop control variables.

All these dependencies must be identified and then used
translation to SPECIAL.

RULE: Capture and identify all loop control mechanisms.

in the

4-9

RULE: Statements capable of altering the performance of loops
must be identified, and their dependencies translated into
SPECIAL.

4.1.4 Parameters and Function "RETURN" Statements

Parameters

Statement

Ada C

Procedure A(void A(a, b, c)
a : in integer;
b : out integer; int a;
c : in out integer) is int *b;
begin int *c;

b := a + c; {
c := a * c; *b = a + (*c);

end; *c
}

void B

= a * (*c);

Procedure B is [)
x,y,z : integer; int x, y, z;
begin {

x := ...; X • = . . . ;
z := ...; Z = = • • •;
A(x,y,z); A(x,&y,&z);

end; }

Translation Rule

- "In" parameters prior to the EFFECTS OF statement, a
NEWVALUE statement should be generated to show flow from the
actual parameter to the new name generated for formal
parameter (see Section 4.1.1 for naming conventions). All C
parameters act as "in" parameters.

"Out" parameters - following the EFFECTS_OF statement, a
NEWVALUE statement should be generated to show flow from the
the formal parameter (see Section 5.1 for discussion on
naming conventions for parameters) to the actual parameter.

"In out" parameters - produce the results of both
"out" parameters.

in' and

4-10

Translation Results

OFUN A [LEVEL L]
EFFECTS
'A#b(LLLLL) = F2(A#a(LLLLL),A#c(LLLLL));
'Attc(LLLLL) = F2(A#a(LLLLL),A#c(LLLLL));

OFUN B[LEVEL L]
EFFECTS
'B#x(LLLLL) = .. . ;
'B#z(LLLLL) = . . . ;
'Afca(LLLLL) = Fl(B#x(LLLLL));
'A#c(LLLLL) = Fl(B#z(LLLLL))5
EFFECTS_OF A;
'Btfy(LLLLL) = Fl(A#b(LLLLL));
'B#z(LLLLL) = Fl(A#c(LLLLL));

Discussion

In all NEWALUE statements generated, if the parameters have a
record type, then the assignments must be expanded into
assignments between components of the actual and formal
parameters. (This is the same as the processing of assignment
statements involving record variables, see assignment section.)

If there is an expression appearing as the actual of an "in"
parameter, then an Fn(...) could be generated to keep the numbers
and placement of actual and formal parameters consistent, i.e.

A(x*y,z);

Becomes

EFFECTS_OF A(F2(x(LLLLL),y(LLLLL)),z(LLLLL));

Function "RETURN" Statements

4-11

Statement

Ada C

function A(int A(x, y)
x : in integer; int x;

y : out integer) return int *y;
int eger is

begin
y := x * 2; {
return y - 1; *y = x * 2;

end; return (*y -
}
void B()

i);

procedure B is
begin {

a := 1; a = 1;
c := A(a,b) - 42; c = A(a,&b) - 42;

end }

Translation Rule

If the subprogram returns a value, then a new name for the
returned value could be made by concatenating the subprogram name
with returns. This new name should be used in any place that the
function value is used. An EFFECTS_OF statement should be placed
preceding the use of the new name.

Translation Results

OFUN A [LEVEL L]
EFFECTS
'A#y(LLLLL) = F2(A#x,k!);
'A#returns(LLLLL) = F2(A#y(LLLLL),k!)5

OFUN B[LEVEL L]
EFFECTS
'a(LLLLL) = Fl(k!);
'A#x(LLLLL) = Fl(a(LLLLL));
EFFECTS_OF A;
'b(LLLLL) = Fl(A#y(LLLLL));
'c(LLLLL) = F2(A#returns(LLLLL),k!);

4.2 STOP APPROACH

STOF merges two steps of the verification process into one. The
translation of source to formal top-level specification (FTLS) followed
by reduction of FTLS to a set of verification formulas is replaced by the
single step of generation of formulas from the source.

4-12

The simplest form of a formula describing a security condition has the
form "lteq(X(labell),Y(label2))." Such a formula will be true if the
security label of X, labell, is less than or equal to the label of Y,
label2. A potential security violation exists if the label of Y is less
than the label of X. The term lteq is used rather than "<=", because the
ordering of labels may not be a linear ordering (security labels will
always be partially ordered).

One lteq formula is generated for each pair of data items between which
information flows. A simple example of an information flow is the
assignment statement:

Y := X;

There is an information flow from X to Y. This is an example of direct
information flow. In this case, the security label of X must be less
than or equal the security label of Y. Another simple example is the
"if" statement:

if x < 10 then
z := 1

else
z := 2

end if;

In the "if" statement above, there is an indirect information flow from x
to z, and a formula will be generated comparing the label of x to the
label of z. The existence of the flow can be seen by noting that
examination of the value of z will determine a range of values for x. A
combination of several inferences such as this one might be combined to
precisely determine the value of x. If x were labelled secret and z were
labelled unclassified then secret information could potentially be
inferred from unclassified information.

Throughout the discussion of STOF, the formula "lteq(x,y)M will be taken
to mean "lteq(x(labell),y(label2))." It will be assumed that there is a
database, such as a data dictionary, which contains all given security
label information. This database can be accessed by STOF and searched to
determine the label of any data item appearing within an lteq formula.

The rules for determining information flow within a source program are
independent of verification—they are part of the semantics of the source
language. To generate formulas directly from source code, the rules
about information flow within the source language are implemented as a
translation program. Two examples of general rules are:

• Information flows from the rhs of an assignment statement to
lhs of the assignment.

the

• Information flows from any data items appearing in the
conditional part of an "if" statement to any output of the
statements appearing within the branches of the "if" statement.

4-13

The amount of detail showing which outputs are dependent on which inputs
determines how specific the verification formulas will be. If an lteq
formula is generated for every combination of input and output of a
procedure, then it is certain that all information flow has been
captured. However, some of the formulas may represent information flow
that does not exist. The processing must be examined to prevent
generation of spurious formulas.

The generation of formulas for all combinations of input and output may
at times be appropriate. During development some modules may be
completed before others, and testing of the system in an unfinished state
is possible using the interfaces for the uncompleted portions of the
system and assuming the worst case (of information flow) for those
portions.

The following formulas are represented in both a prefix and infix
notation. The semantic meanings of these notations are identical, only
the syntactics differ. Prefix notation places the operators at the
beginning of the corresponding operands, while infix notation places them
in the middle of the operands.

4.2.1 Assignment Statements

• Expression to Scalar Type

Statement

Ada | C
 1

xl := 42 * yl - | xl = 42 * yl -
(z2 / x2); | (z2 / x2);

Translation Rule

Information flows from all data items on the rhs of an assignment
statement to the data item on the lhs of the assignment
statement. The following flows are present in this example:

42 -> xl, yl -> xl, z2 -> xl, x2 -> xl

Resulting Formulas

Flow from constants is captured - constants may or many not
be given security labels (same in Infix standard as in Prefix
Boyer-Moore)

lteq(42,xl), lteq(yl.xl), lteq(z2,xl), lteq(x2,xl)

4-14

Flow from constants is ignored (same in Infix standard as in
Prefix Boyer-Moore)

lteq(yl?xl), lteq(z2,xl), lteq(x2,xl)

• Structured Type to Same Structure Type

Statement

Ada | C

type smallrec is
record

x : integer;
y : character;

end record;

type stuffrec is
record
otherstuff : smallrec;
a,b : integer;

end record;

recl,rec2 : stuffrec

reel := rec2;

Translation Rule

typedef struct smallrec {
int x;
char y;

}

typedef struct stuffrec {
struct smallrec otherstuff;

int a,b;

}

struct stuffrec recl,rec2;

reel = rec2;

Information flows between a component of the record variable on
the rhs of the assignment to the corresponding component of the
record variable on the lhs of the assignment.

The following flows are present in the above example:

rec2#otherstuff#x -> recl#otherstuff#x,
rec2#otherstuff#x -> recl#otherstuff#x,
rec2#a -> recl#a,
rec2#b -> recl#b

Resulting Formulas

(Same in Infix standard ar in Prefix Boyer-Moore.)

lteq(rec2#otherstuff#x,recl#otherstuff#x),
lteq(rec2#otherstuff#x,recl#otherstuff#x),
lteq(rec2#a,recl#a),
lteq(rec2#b,recl#b)

4-15

• Array Components

Statement

Ada

type stuffrec is
record

a,b : integer;
end record;

type twinarray is
record
x,
y: array (1..10) of

integer;
end record;

type stuffarray is
array (1..20) of

stuffrec;

reel : stuffarray;
rec2,rec3 : twinarray;

recl(u).a := 13 *
rec2.x(v) - rec3.y(w);

Translation Rule

typedef struct stuffrec {
int a,b;

} stuffarray[10];

typedef struct twinarray {
int x[10],y[10];

}

struct stuffarray reel;
struct twinarray rec2,rec3;

recl[u].a = 13 *
rec2.x[v] - rec3.y[w];

If a variable of structured type has array-type components, then
any identifiers used to index the array are extracted.
Information flow is shown from the array indices on either side
of the assignment statement to the variable on the lhs of the
assignment.

Information flows from the array variable on the rhs of the
assignment statement to the identifier on the lhs.

Information flows from any identifiers used to index the
array variable on the rhs to the identifier on the lhs.

Information flows from any identifiers used to index an array
variable appearing on the lhs to the identifier on the lhs.

The following flows are present in the above example:

13 -> recl#a,
u -> recltfa,

rec2#x -> recl#a,
v -> recltta,

rec3#y -> reclta
w -> recl#a

4-16

Resulting Formulas

(Same in Infix standard as in Prefix Boyer-Moore)

lteq(13,recl#a), lteq(rec2#x,reclfla), lteq(rec3#y,recl#a)
lteq(u,recl#a), lteq(v,reclja), lteq(w,recl#a)

A.2.2 Conditionals And Iteration

"If" Statements

Statement

Ada C

if (xl < yl) then
zl := x2

else
z2 := y2

end if;

if (xl < yl)
zl = x2;

else
z2 = y2;

Translation Rule

There is information flow from any data items involved in the
conditional part of an "if" statement to any outputs of any
statements contained within the "if" statement.

The following flows are present in this example:

xl -> zl,
yl -> z2,

Resulting Formulas

xl -> z2,
x2 -> zl,

yl -> zl,
y2 -> z2

Omitting conditional information (same in Infix standard as
in Prefix Boyer-Moore)

lteq(xl,zl), lteq(xl,z2), lteq(yl,zl)
lteq(yl,z2), lteq(x2,zl), Iteq(y2,z2)

4-17

Retaining conditional information

Infix (standard) Prefix (Boyer-Moore)

(xl < yl) => lteq(xl,zl)

not (xl < yl) =>
lteq(xl,z2)

(xl < yl) => lteq(yl,zl)

not (xl < yl) =>
lteq(yl,z2)

(xl < yl) => lteq(x2,zl)

not (xl < yl) =>
lteq(y2,zl)

(IMPLIES (LESSP xl yl)
(lteq xl zl))

(IMPLIES (NOT (LESSP xl yl))
(xl z2))

(IMPLIES (LESSP xl yl)
(lteq yl zl))

(IMPLIES (NOT (LESSP xl yl))
(lteq yl z2))

(IMPLIES (LESSP xl yl)
(lteq xl zl))

(IMPLIES (NOT (LESSP xl yl))
(lteq y2 zl))

"Case" Statements

Statement

Ada C

case xl is switch (xl) {
when 1 => x2 := zl; case 1 : x2 = zl;
when 2 => y2 := yl; case 2 : y2 = yl;
when 3 => z2 := xl; case 3 : z2 = xl;
when others => default:

x2 := z2; x2 = z2;
end case; }

Translation Rule

Information flows from the expression part of the "case" to any
output of a statement within each alternative of the "case". In
both Ada and C the values used to denote each alternative are
constants (string or enumerated) and for this reason can usually
be ignored.

The following flows are present in the above example:

xl -> x2,
zl -> x2,

xl -> y2,
yl -> y2,

xl -> z2,
xl -> z2,

xl -> x2,
z2 -> x2,

(The flows (xl -> z2) and (xl -> x2) appear twice, one of each of

4-18

these can be omitted during the proof process, with the single
remaining formula of each representing both possibilities of
each.)

Resulting Formulas

- Without using conditional or value information about 'x2'
(same in Infix standard as in Prefix Boyer-Moore)

lteq(xl,x2), lteq(xl,y2), lteq(xl,z2), lteq(xl,z2),
lteq(zl,x2), lteq(yl,y?), Iteq(z2,x2)

- Using conditional but not value information about "x2"

Infix (standard)

condl(xl) => lteq(xl,x2)

condl(xl) => lteq(zl,x2)

condl(xl) => lteq(xl,y2)

condl(xl) => lteq(yl,y2)

condl(xl) => lteq(xl,z2)

condl(xl) => lteq(xl,x2)

condl(xl) => lteq(z2,x'5.)

Prefix (Boyer-Moore)

(IMPLIES (CONDI xl
(lteq x

(IMPLIES (CONDI xl
(lteq z

(IMPLIES (CONDI xl
(lteq x

(IMPLIES (CONDI xl
(lteq y

(IMPLIES (CONDI xl
(lteq x

(IMPLIES (CONDI xl
(lteq x

x2))

x2))

y2))

y2))

z2))

x2))

(IMPLIES (CONDI xl)
(lteq z2 x2))

4-19

- Using conditional and value information about "x2"

Infix (standard) Prefix (Boyer-Moore)

(xl = 1) => lteq(xl,x2)

(xl = 1) => lteq(zl,x2)

(xl = 2) => lteq(xl,y2)

(xl = 2) => lteq(yl,y2)

((xl = 3) or (xl = 4))
=> lteq(xl,z2)

(xl <> 1) and (xl <> 2)
and (xl <> 3)
and (xl <> 4) =>
lteq(xl,x2)

(xl <> 1) and (xl <> 2)
and (xl <> 3)
and (xl <> 4) =>
Iteq(z2,x2)

(IMPLIES (EQUAL xl 1)
(lteq xl x2))

(IMPLIES (EQUAL xl 1)
(lteq zl x2))

(IMPLIES (EQUAL xl 2)
(lteq xl y2))

(IMPLIES (EQUAL xl 2)
(lteq yl y2))

(IMPLIES (OR
(EQUAL xl 3)
(EQUAL xl A))

(lteq xl z2))

(IMPLIES (AND
(NOT (EQUAL xl 1))
(NOT (EQUAL xl 2))
(NOT (EQUAL xl 3))
(NOT (EQUAL xl 4)))

(lteq xl x2))

(IMPLIES (AND
(NOT (EQUAL xl 1))
(NOT (EQUAL xl 2))
(NOT (EQUAL xl 3))
(NOT (EQUAL xl 4)))

(lteq z2 x2))

Conditional Loops

Statement

Ada C

stuff: stuff:
loop do {

xl := xl + yl; xl = xl + yl;
exit when x2 > 42; if (x2 > 42) break;

end loop stuff; } while (1 == 1);

4-20

Translation Rule

If a name for the loop exists, then it will be extracted. If
there are no conditions for the loop (there may be an "if"
statement that leads into an unconditional exit, however), then
the statements within the loop will be processed as if the loop
did not exist.

The following flows are present in the above example:

x2 -> xl, 42 -> xl, xl -> xl, yl -> xl

Resulting Formulas

(Same in Infix standard as in Prefix Boyer-Moore)

lteq(x2,xl), lteq(42,xl), lteq(xl,xl), lteq(yl,xl)

Iterative Loops

Statement

Ada | C

for xl in yl..42
loop

y2 := xl * zl;
end loop;

Translation Rule

for (xl = yl;
xl <= 42;
xl++) y2 = xl * zl;

Any identifiers appearing in the iteration scheme of a "for"
statement, or in the conditional part of a "while" statement, or
as conditions for exiting the loop will be collected, and put on
the lhs of an implication, with the rhs being the translation of
any statements within the loop.

The following flows are present in the above example:

xl -> y2,
xl -> y2,

yl -> y2,
zl -> y2

42 -> y2,

Resulting Formulas

(Same in Infix standard as in Prefix Boyer-Moore)

lteq(xl,x2), lteq(yl,y2), lteq(42,y2),
lteq(xl,y2), lteq(zl,y2),

4-21

A.2.3 Parameters and Function "RETURN" Statements

• Parameters and Function "Return"

Statement

Ada ! C

function A(A(xl,yl)
xl,yl : integer) int xl.yl;
return integer is {

y2 :integer; int y2;
begin y2 = xl * yl;
y2 := xl * yl; return (y2-l);
return y2 - 1; }

end;

procedure B is B()
xl,yl,zl : integer; {
begin int xl,yl,zl;

xl := 1; xl = 1;
yl := 2; yl = 2;
zl := A(xl,yl) - 42; zl = A(xl,yl) - - 42;

end }

Translation Rule

Subprogram parameters:

"In" parameters - there is information flow from the actual
parameter to the formal parameter. All C parameters act as
"in" parameters.

"Out" parameters - there is information flow from the formal
parameter to the actual parameter.

"In out" parameters - there is bidirectional flow between the
formal parameter and the actual parameter.

Return statements:

There is information flow from any data items
appearing in a return statement to any expression in
which the function is invoked.

Renaming conventions are as described earlier.

4-22

The direct flows present:

1 -> B#xl, 2 -> B#yl,
B#yl -> A#yl A#xl -> A#y2,
A#y2 -> Aflreturns, 1 -> A#returns,
B#yl -> Atyl, Aftreturns -> B#zl,
B#xl -> A#xl, B#xl -> A#y2,
A#yl -> A#y2, 2 -> B#zl

Ignoring flows from constants, and applying
transitivity, the following additional flows are
found:

B#xl -> A#returns, B#xl -> B#zl,
B#yl -> B#zl, A#xl -> A#returns,
A#yl -> Atreturns, A#yl -> B#zl,
A#xl -> B#zl, B#yl -> A#returns
A#y2 -> B#zl,

Resulting Formulas

(Same in Infix standard as in Prefix Boyer-Moore)

lteq(l,B#xl), lteq(2,B#yl),
lteq(B#yl,A#yl), lteq(A#xl,A#y2),
lteq(A#y2,A#returns), lteq(l,A#returns),
lteq(B#yl,A#yl), lteq(A#returns,B#zl),
lteq(B#xl,A#returns), lteq(B#xl,B#zl),
lteq(B#yl,B#zl), lteq(A#xl,A#returns),
lteq(A#yl,A#returns), lteq(A#yl,B#zl),
lteq(B#xl,A#xl), lteq(B#yl,A#returns),
lteq(A#yl,A#y2), lteq(A#xl,B#zl),
lteq(B#xl,A#y2), lteq(A#yl,B#zl)
lteq(2,B#zl),

4-23

SECTION 5

THEOREM PROVER EVALUATIONS

Once either STOS or STOF has produced a formulas file, it must be
integrated with a theorem prover to determine whether the generated
statements are true or false. One advantage of STOF is that it will be
designed to adapt with various theorem provers while STOS is restricted
to the theorem provers used by HDM. The STOF verification approach
offers users flexibility in choosing a theorem prover.

Three existing theorem provers are good candidates for use with STOF.
These are Boyer-Moore, Shostak, and COMPUSEC.

5.1 BOYER-MOORE

The Boyer-Moore theorem prover [3] is currently being used with the
standard HDM toolset. Characteristics of this existing theorem prover
include:

• Implemented in Interlisp

• Notation for input is lambda calculus in prefix format

• Runs in a fully automatic state (user cannot guide proofs during
run-time—does not provide interactive aid to finding proofs)

• Handles induction, propositional logic, user-defined recursive
functions

• Report generation is clear and well-organized

5-1

5.2 SHOSTAK

The Shostak. theorem prover has been developed for use with the
Enhanced-HDM toolset. Features of this theorem prover include:

• Implemented in MACLISP

• Notation for input is predicate calculus

• Runs in a fully automatic state, but is user guided (requires an
instruction queue)

• Handles propositional logic user-defined recursive functions—
will handle induction in the future

5.3 COMPUSEC

The COMPUSEC theorem prover is still under development; however, the
majority of the tool has already been implemented and tested. COMPUSEC
has conducted an in-house comparison on the operation of the Boyer-Moore
theorem prover and the COMPUSEC theorem prover. The COMPUSEC theorem
prover was found to require substantially less computational time and
resources than the Boyer-Moore theorem prover when proving identical
theorems. The following characteristics are either already implemented
in the COMPUSEC theorem prover or will be implemented in the near future:

• Implemented in VAX-Pascal

• Notation for input is standard predicate calculus in infix format

• User has option of running theorem prover in an interactive state
or a fully automatic state

• Currently handles propositional logic - will handle induction and
user-defined recursive functions in near future

• Faster computation time than Boyer-Moore

• Report generation will be clear and well-organized - can be
tailored to user's needs

5-2

SECTION 6

SOURCE CODE VERIFICATION TOOL SPECIFICATIONS

6.1 STOS CODE VERIFICATION TOOL

6.1.1 SOURCE Subset Bandied By STOS

Programming language power and flexibility may conflict with clear
representation of information fa.ow. Some language constructs (such as
pointers) can cause information flow that cannot be anticipated or
derived from static examination of the source. Indeed, most languages
include a mechanism for inserting comments into the source code for
clarification of such ambiguities. However, such comments are only
programmer aids and do not represent valid input for a formal
specification. Additionally, program source can be obscure if the source
language does not formally specify the actions resulting from a given
construct. An example can be found in Ada multi-tasking: multi-tasking
is a feature of the language, but a description of how memory allocation
is handled during processing of this feature is not explicitly stated.
In such cases it is not possible to derive accurate formulas specifying
information flow and correctness. Hence, in translation of a source to
formulas, the source language must be restricted to an unambiguous subset
that can be formally stated.

To determine which constructs of the Ada language will be included in the
Ada subset, each construct must be analyzed for its inherent security
properties. Constructs that are not well-defined with respect to
processing and memory allocation are not suitable for STOS. Such
constructs generate information flows that cannot be definitively
specified with formulas. If non-deterministic information flows were
allowed in the formal verification process, any resulting proofs would
also be non-deterministic. Examples of constructs that fall into this
category are "exception," "generic," and "task."

• Description

Certain criteria must be met in order to define an Ada subset
that is both functional and verifiable. Any constructs that

6-1

present problems in formula generation must be either omitted or
restricted in the subset. Naturally, restricting the use of a
programming language in this way will inhibit some of its
usefulness in writing applications. Care must be taken to ensure
that the verifiable subset does not significantly limit
programming applications.

During lexical analysis all Ada reserved words are recognized;
however, only those contained in the subset are processed.
Messages will be generated to flag each encountered Ada construct
that is not part of the specified subset (see Table 6-1).

• Specification

Following is a specification containing all Ada constructs that
are included in the STOS SOURCE subset. All punctuation existing
in the Ada language will be included within the Ada subset. This
includes binary operators (i.e., +, /, -, and *).

<blocks> - These constructs act as headers used to group
specific portions of the code. They define the processing
bodies for the program.

begin
body
end
package
use
with

declarations and types> - These constructs provide a means
for defining different entities. The type of an item
dictates which operations are permitted on that item.

array out
at procedure
constant range
delta record
digits renames
function separate
in subtype
is type
of

<operators> - These constructs represent specific functions
that are to be performed on associated entities.

abs or
all rem
and reverse
mod xor
not

6-2

Table 6-1. Ada Reserved Words Handled By STOS

*abort begin case ^declare else
abs body constant *delay elsif

*accept delta end
*access digits *entry
all do ^exception
and exit
array
at

for
function

^generic
*goto

if
in
is

*limi ted
loop

mod

*new
not
null

of package *raise ^select
or *pragma range separate
others *private record subtype
out procedures rem

renames
return
reverse

*task
*terminate
then
type

use when
while
wi th

xor

* Not member of verifiable Ada subset

6-3

<statements> - These constructs combine to form a list of all
the possible Ada statements that can be analyzed using the
STOS approach.

case loop
do null
else others
elsif return
exit then
for when
if while

6.1.2 SPECIAL Subset Used By STOS

HDM is an aid to design, implementation, and verification of software
systems. It includes the language SPECIAL, the theorem prover, and the
MLS formula generator used for multilevel security. HDM has been used
widely in the verification of software currently in use by the Department
of Defense.

Specifications of a multi-level secure (MLS) system can be written in
SPECIAL [21]. A SPECIAL specification provides a description of the
external visible behavior of a system (i.e., a description of how the
system responds to each possible external stimulus). Possible external
stimuli are defined as the invocation of the visible operation references
(a visible operation together with a particular set of values for its
arguments). The specification describes how the internal state of the
system changes when a particular visible operation reference is invoked
and identifies the value returned by the invocation of the operation
reference.

MLS models require that there be a set of values, L, which act as
security levels and that these values be partially ordered under some
binary relation, named here as "lteq". This information must be provided
before a proof can be attempted.

Applying the MLS proof tools yields a listing of the attempted proofs of
a set of formulas. If the attempted proofs of all the formulas are
successful, this implies that the specification is MLS with respect to
the given security levels. Note that the proof does not determine how
the security levels are interpreted or how access to them is controlled
in a given implementation.

SPECIAL was originally designed as a vehicle for specifying system
development using a top-down approach. It is a broad language consisting
of many constructs that are intended to represent functionality and/or
information flow. When using SPECIAL as a vehicle for formal

6-4

verification, information flow is the primary concern. Constructs
dealing solely with functionality are unnecessary. In fact, only a
subset of the SPECIAL language is supported by the HDM MLS tool. These
factors render the use of an unabridged SPECIAL both inefficient and
unnecessary in the STOS approach. Therefore, a subset of the language
must be specified for use with STOS.

• Description

A module specification in SPECIAL consists of six paragraphs,
each of which is optional in a given specification. In its most
general form, the top-level structure looks like:

MODULE <symbol>

TYPES
<types body>

PARAMETERS
<parameters body>

DEFINITIONS
definitions body>

EXTERNALREFS
<externalrefs body>

ASSERTIONS
<assertions body>

FUNCTIONS
<functions body>

END_MODULE

- The TYPES paragraph contains the declarations for all
internal named types (including designator types) used in the
module specification. The only two types which are necessary
for tracing information flow follow.

a. "LABEL" represents the security label of subjects and
objects within the specification. LABEL can be
represented as either a designator or as an aggregate of
designators (one designator for each component of the
security label).

b. "DATA" is used to represent a single object. Structured
objects are split into their component parts when
represented in FTLS, with each component being
represented by a distinct object.

6-5

The PARAMETERS paragraph contains the declarations for
symbolic constants called module parameters. Module
parameters are similar to V-functions (defined in the
FUNCTIONS paragraph) except that their values cannot be
changed. These symbols are used to represent either
information flow out of one or more objects or constants
whose properties are defined by assertions rather than
function definitions. [12]

A module parameter that must appear in all FTLS used for
security analysis is "lteq" (less than or equal to). The
format used is lteq(DATA L1,L2). The format of "lteq" is
defined in the PARAMETERS paragraph, and its actual effects
are defined in the ASSERTIONS paragraph, "lteq" determines,
by comparing security labels of objects LI and L2, if
information flow is allowed from LI to L2.

The following module parameters were developed by COMPUSEC
specifically for use in security analysis. The first two are
symbolic constants, the rest are parameters used for
specifying information flow.

a. K! - represents any unlabeled constant. In almost all
cases constants are unimportant to the security aspects
of information flow, and hence are represented by a value
which will be ignored by the MLS tool.

b. LLLLL - represents any unknown security label. No
assertions are made in the FTLS about the state of LLLLL
and hence if an MLS analysis is made on FTLS containing
LLLLL, there will be a security flaw shown at every
appearance of an LLLLL.

c. Fn (i.e. Fl, F2...Fn) - is a place holder for n objects.
For example, an entry in the PARAMETERS paragraph would
have the form:

F3(DATA V1.V2.V3),

where "F3" shows information flow from three objects.
When processing the statement

Y := Z - X + 42;

The information flow within this statement is in no way
dependent on the arithmetic operations, and hence the
FTLS would contain the statement

'Y = F3(Z,X,K!);

6-6

d. CONDn - behaves exactly like Fn. "COND" is used when
generating FTLS for conditional statements, and is used
instead of 'F' for readability purposes. An example of
its use is the translation of the statement

if X < Y then
Z := X;

This will be represented in the FTLS by

C0ND2(X,Y) =>
('Z = F1(X));

The DEFINITIONS paragraph contains the definitions for
macro-like auxiliary function definitions. A common use of
the DEFINITIONS paragraph is to represent a complex
structured entity using a single symbol. For example, a
three compartment label can be represented by a single string
if the following definition is made:

LEVEL C_0_0 IS LABEL(CC,00,CC);

(LABEL would have to have been defined in the PARAMETERS
paragraph as type LEVEL, and LEVEL defined as STRUCT_0F(DATA
C1,C2,C3) where C1,C2, and C3 are the names of the three
compartments.)

The EXTERNALREFS paragraph contains the declarations for
other modules that are externally referenced in the
specification. These objects include designator and scalar
types; V-, 0-, and OV-functions (defined in FUNCTIONS
paragraph); and parameters.

The ASSERTIONS paragraph contains assertions that are
constraints on the module's parameters, and invariants of the
module that need to be proved from its specification. The
ASSERTIONS paragraph is used in security FTLS to define the
properties of "lteq." These assertions determine which
information flows will be allowed during MLS analysis. The
truth value of lteq(X,Y) is asserted to be either true or
false for pairs of security labels. In the case of
compartmented labels, lteq is defined as the conjunction of
truth values of relations between corresponding components of
the two labels.

6-7

The following assertions could be made for uncompartmented
labels:

lteq(unclassified,unclassified),
{ read as unclassified may flow into unclassified }
Iteq(unclassified,confidential),
{ read as unclassified may flow into confidential }
lteq(confidential,secret),
{ read as confidential may flow into secret }

~lteq(secret,unclassified)
{ read as secret may not flow into unclassified }

If labels have two compartments representing classification
and integrity, then two new functions will be needed for
comparison of the components:

slteq(X,Y) - used for classification checks
ilteq(X,Y) - used for integrity check

The relationship between lteq and the two functions slteq and
ilteq is then asserted in the FTLS by

FORALL DATA XI; DATA 115
DATA X2; DATA Y2;
lteq(LABEL(Xl,Yl),LABEL(X2,Y2)) =

(slteq(Xl,X2) AND
ilteq(Yl,Y2));

This states that lteq is true if and only if slteq and ilteq
are simultaneously true.

- The FUNCTIONS paragraph contains the definitions for all V-,
0-, and OV-functions of the module. A VFUN returns a value.
An OFUN changes system state. An OVFUN changes system state
and returns a value. The actual information flow within the
system is represented in this paragraph. The structure of
expressions appearing in the FUNCTIONS paragraph was
described in the discussions of translation methodology of
STOS.

In defining a SPECIAL subset, certain criteria must be met. All
constructs in the defined subset must be supported by the HDM MLS
tool. Also, the SPECIAL subset must be able to adequately
specify, with respect to information flow, the chosen source
subset.

6-8

The SPECIAL language consists of the keywords found in Table 6-2.
The following punctuation is specific to the SPECIAL language:

' - new value
=> - implies
? - undefined
-> - function return value
$() - comment

Punctuation generic to all languages (i.e., +, -) is included in
the SPECIAL language. It performs the same basic functions as in
other programming languages. However, this punctuation is not
specified as part of our subset and therefore will not be
detailed in this report.

o Specification

SRI International, the developers of the HDM toolset, placed
certain restrictions on SPECIAL for use with HDM. These
restrictions, as stated below, form a baseline for our subset of
the language. [22],[23]

No recursive or mutually recursive definitions are permitted.

- The key words NEW, TYPECASE, and RESOURCE_ERROR may not be
used.

- An expression may contain no more than one reference to a new
value. A new value is either a quoted V-function reference
(i.e. 'identifier), an EFFECTS_OF expression, or, in an
OV-function, a return value reference.

In the effects of an OV-function, the return value reference
may occur only once.

A new value reference may not occur in:
— The qualification part of a LET, FORALL, EXISTS,

SOME, or set expression.
— The antecedent of an implication.
— The boolean expression in an "if" expression.
— The range of a vector constructor.

If the specification consists of more than one module, the
directed graph of external references between the module must
have no loops.

COMPUSEC has extensive practical experience using SPECIAL. From
this knowledge base, COMPUSEC has limited the list of useable
constructs even further to produce a more concise and effective
security analysis language. Also, COMPUSEC has designed some
additional constructs in SPECIAL, which aid in the security
analysis of the system. These constructs (COND, F, K!, DATA,

6-9

LEVEL, LLLLL) function as parameters in the language. A
description of all SPECIAL constructs [24] and COMPUSEC-developed
constructs that combine to form the SPECIAL subset for STOS are
found in Table 6-2 and in the following descriptions:

<blocks> - These constructs act as headers used to identify
specific parts of the SPECIAL program. The PARAMETERS
section is where the COMPUSEC-developed constructs (DATA,
LEVEL, COND, F, LLLLL, and K!) are defined. DATA and LEVEL
are used to define identifiers which represent security label
information. The ASSERTIONS section specifies the security
rules by which information flow is analyzed.

ASSERTIONS FUNCTIONS
DATA LEVEL
DECLARATIONS MODULE
DEFINITIONS PARAMETERS
EFFECTS TYPES
EXTERNALREFS

declarations and types> - These constructs are used as
descriptors of identifiers. They define how a variable will
be represented and manipulated within the program.

BOOLEAN OVFUN
DESIGNATOR STRUCT
FORALL STRUCT_0F
OFUN VFUN
ONE_OF

<operators> - These constructs represent specific functions
that are to be performed on associated entities. Of
particular interest is the operator F which stands for
"function of." This is one of the COMPUSEC-developed SPECIAL
constructs. It is a generic symbol to represent the
dependency of a "new value" on the identifiers involved in
its creation. It addresses information flow for any and all
possible operations without concern for algorithmic
functionality.

AND OF
COND OR
F WITH
FROM =>
IN ?
IS ->
NOT

6-10

Table 6-2. SPECIAL Constructs Handled By STOS

and boolean •cardinality declarations effects_of
assertions •char definitions effects

•assert •delay
derivation
designator

•diff

else
end
end i f

•end map
end module

•exceptions
•exceptions of
exists
externalrefs

false hidden if •let •map
•for in •length •mappings
forall initially •max
from •inset •min
functions •inter

•integer
•invariants
is

•mod
module

•new of parameters •real •set_of
not ofun •resource error •some

•on struct
one of struct of
or •subset
ovfun

then •undefined •vector •with
•to •union •vector of
true •until vfun
types

•typecase

• Not member of verifiable Ada subset

6-11

identifiers and expressions> - These constructs are a means
of specifying different identifiers and expressions in the
language. For example, all constants are represented as K! .
LLLLL is a place holder for an unknown label.

FALSE LLLLL
K! TRUE

<statements> - These constructs identify specific types of
statements in SPECIAL. Each time the value of a variable is
modified, it is represented by a "new value" (') statement.

DERIVATION EXISTS
EFFECTS_OF IF
ELSE INITIALLY
END THEN
END_IF
END_MODULE

<visibility rules> - The HIDDEN construct restricts
referencing of VFUNs. When used, only the module in which
the VFUN exists may reference the VFUN.

HIDDEN

6.1.3 STOS Cross-Compiler Specification

The subset of the Ada language described in the previous section is input
to STOS for translation. STOS will output a FTLS that captures all
information flow represented in the Ada source code. STOS will also
label the FTLS so that it can be submitted to HDM's MLS tool for
generating verification conditions. Output from the MLS tool can then be
submitted to the theorem prover.

The components of STOS are:

• Ada Security Analyzer

Lexical Analyzer
Parser

• Labeler
• Propagator
• SPECIAL generator
• Automated Tracer

These components combine to form the cross compiler. Each phase will be
specified in subsequent sections.

6-12

Figure 6-1 depicts a high level description of the component steps in the
STOS cross-compiler. Subsequent sections describe each component in
further detail. Required functionality is specified for each component.
Details of implementation (i.e. choice of program source language, type
of parser) are left to the implementor.

6.1.4 STOS Ada Security Analyzer

• Lexical Analyzer

The Lexical Analyzer (see Figure 6-2) acts as the interface
between the source program and the parser. It reorganizes Ada
source code into a format that is readable by the parser. During
this phase, the Ada source is modified by introducing tokens to
the code.

- Description

The Lexical Analyzer reads the source program one character
at a time, carving the source program into a sequence of
atomic units called tokens. Each token represents a sequence
of characters that can be treated as a single logical entity.
Identifiers, keywords, constants, operators, and punctuation
symbols (i.e., commas and parentheses) are typical tokens.
For example, the following Ada statement contains seven
tokens:

Ada Tokens

if (I = MAX) then if

(
I

MAX

)
then

In general, each token is a substring of the source program
and is to be treated as a single unit (it is not reasonable
to treat M or MA of the identifier MAX in the example above
as an independent entity). There are two kinds of tokens:
specific strings such as "if" or a semicolon, and classes of
strings such as identifiers, constants, or labels.

The Lexical Analyzer can also be used to customize
compilation in order to reflect application or security
requirements. It can retrieve and insert code referenced by

6-13

SUBSET

CROSS-COMPILER

LEXICAL
ANALYZER

1

PRE-
PROCESSOR

1
T

LEXICAL
ANALYZER

1
V

PARSER

1
T

LABELER

1
T

PROPAGATOR

1

SPECIAL
GENERATOR

LABELED

FTLS

Figure 6-1. STOS Cross-Compiler

6-14

SOURCE SUBSET
OR

MODIFIED SOURCE

LEXICAL ANALYZER

READ
CHARACTERS

ISOLATE
SYMBOL

DETERMINE
SYMBOL TYPE

Figure 6-2. STOS Lexical Analyzer

6-15

Ada "include" statements. It can also capture information
flow contained in externally referenced files such as library
routines, and can comment out certain routines determined to
have no security relevance. It can resolve user definitions.
Finally, the Lexical Analyzer can format system requirement
comments in order to facilitate automated requirements
traceability (see Section 6.1.8).

- Specification

The Lexical Analyzer will take Ada source code as input and
return tokens as specified by the syntax given in
ANSI-MIL-STD-1815A [9]. The Lexical Analyzer shall read a
single character at a time from the input Ada source code.
The Lexical Analyzer will then identify and isolate symbols
from this character stream by following lexical rules for
detecting symbol boundaries. As a symbol is found it is
looked up in the stored symbol table. When a symbol match is
found in this table, the value associated with the symbol
shall be used to determine symbol type.

The token shall be returned in two parts: The first part
represents the token value, the second represents the token
type. Token values can be ASCII values for strings, numbers,
symbols, or null. Token types can be constant, identifier or
the valid Ada delimiters, keywords, and operators.

Token values shall be: ASCII or numeric value for constants,
ASCII string value for identifiers, ASCII value for
delimiters and operators, Null for reserved words.

Parser

The parser serves two primary functions. First, it checks that
the tokens appearing in its input occur in patterns that are
permitted by the specification for the source language. Second,
it creates a tree-like representation of the input using these
tokens (see Figure 6-3). The generated parse tree is used in
subsequent phases of the STOF cross-compiler.

- Description

Input tokens are checked for syntactic and semantic
correctness before the parse tree is created. Syntax and
semantic errors can therefore be flagged. The Ada
expression in the following example will generate an
error when it is evaluated by the parser:

6-16

PARSER

READ
TOKENS

1
r

ANALYZE
SYNTAX

1
T

ANALYZE
SEMANTICS

1 r
BUILD

PARSE TREE

PARSE
TREE

Figure 6-3. STOS Parser

6-17

Ada

A + / B

Parser Input

A-identifier
+-operator
/-operator
B-identifier

The parser's syntax analyzer will detect an error when it
receives the /-operator token, because the presence of
two adjacent binary operators violates Ada expression
formation rules.

The parser will also analyze Ada type declarations and
enter type information into the symbol table. Type
information is necessary to determine a statement's
semantic consistency. In Ada, a single data name may be
used to reference several distinct data items declared in
different scopes. The symbol table is used to
distinguish different contexts where the same data item
names are used.

Although the parser does not need to allocate space for
different types, it must match types and maintain unique
names. Context-dependent Ada data item names must be
changed to unique names that can be used throughout the
entire translation. One way to accomplish this is to
append a number to each declared instance of a name.

The generated parse tree must show the hierarchical
structure of the incoming token stream. This is
accomplished by grouping together tokens from the token
stream. Token groupings will then reflect processing
sequence according to the semantics of the Ada language
specification.

Specification

The parser shall accept tokens generated by the Lexical
Analyzer. Type information shall be extracted from
tokens and entered into the symbol table. Unique names
shall be established and maintained for every data item
even when the same name is used in different contexts.
Tokens and unique names shall be grouped to reflect the
hierarchical structure of the input source code. A parse
tree is constructed from this source. Initial and final
conditions for each statement are stored at the same
point in the tree as the statement. The output parse
tree shall be suitable for use in subsequent phases of
the cross-compiler.

6-18

6.1.5 STOS Labeler

Labeling is a necessary phase in the verification of an MLS system. It
serves to identify objects and subjects that require special handling for
security by associating a label classification. It also allows an
information flow analysis tool to identify flows that can potentially
compromise classified information (see Figure 6-4).

• Description

The Labeler reads the static label data base from disk and stores it
in a format suitable for high speed label retrieval. The Ada parse
tree is input to the labeler with data items in the tree having an
empty slot for a label. For each data item in the parse tree, the
labeler will search the static label data base for the corresponding
label. If the label is found, the labeler will insert the label from
the static data base into the empty slot. If the label is not found,
the slot will be filled with an unspecified floating label.

In this manner, the labeler will fill the parse tree with static and
unspecified floating labels.

• Specification

The Labeler will take as input a data base of static label
information and the parse tree as generated by the STOS parser. It
shall label data items in the parse tree with labels from the data
base of static labels.

Data items will be tuples composed of a data name and label. The
parse tree from the Ada STOS parser will be a structure delineating
hierarchically the operations end data items of the source with
floating unspecified labels.

The static label data base will be composed of data items with static
labels; that is, data items with known unchanging labels.

The labeler's primary action will be to associate entries in this
data base with entries found in the parse tree. It shall then label
every data name in the parse tree with the corresponding data base
entry label.

This action shall serve to label all statically labeled data items in
the parse tree. All unlabeled data items will default to floating
labels to be set later by the propagator.

6-19

PARSE
TREE

LABELER

READ
LABELING DATA

T
LABEL ALL
NSTANCES IN
PARSE TREE

PARSE TREE
WITH FIXED LABELS

Figure 6-4. STOS Labeler

6-20

6.1.6 STOS Propagator

Label propagation is the process by which labeling information is
transferred from data items with static labels to data items with
floating labels. This happens when information from the static item is
passed to the floating item. If the static label is higher than the
floating label, the floating data item will contain information from the
static item. Therefore, it should also have this dominant label. Thus,
in this phase, unlabeled and floating data items are labeled with the
highest label of the information they will contain (see Figure 6-5).

• Description

On input of the Ada parse tree, the propagator's task, is to
determine the dependencies of unspecified floating labels on
statically labeled data items. The propagator will then change
these unspecified labels to the most dominant label of the data
items on which they depend. To do this, the propagator uses
knowledge about labels and their relationships. It must also
have knowledge about dependencies shown in the Ada parse tree,
and in the static labels set by the labeler.

Labeling conflicts may occur during label propagation. The
propagator must have facilities for reporting errors resulting
from conflicts between static and floating labels. This output
should be able to reference data items as shown in the Ada source
by line numbers showing the correct data name.

• Specification

The propagator will take as input an Ada parse tree generated by
the STOS Ada parser. This parse tree will indicate information
flow and dependencies through a hierarchical structure.

Data items given floating unspecified labels in the parse tree
will be collected. For each of these data items, a dependency
list will be established. This list will show dependencies
between data items with floating labels and all other data items
that pass information to them.

For every data item with a floating label, the propagator will
determine the most dominant label in its dependency list and will
set the floating label to that label. It will repeat this
process until all floating labels are given the most dominant
label in their dependency lists. Any resulting conflicts will be
reported.

6-21

PARSE TREE
WITH

FIXED LABELS

I
PROPAGATOR

ESTABLISH
DEPENDENCY

UPDATE FLOATING
LABELS

REPORT LABELING
CONFLICTS

T
PARSE TREE

WITH FIXED AND
FLOATING LABELS

Figure 6-5. Propagator

6-22

6.1.7 STOS SPECIAL Generator

The SPECIAL generation phase converts a labeled Ada parse tree into a
sequence of SPECIAL instructions representing information flow. Ada
Assignment statements, conditionals, loops, procedures, and functions
represented in the parse tree will be translated into valid SPECIAL
statements (see Figure 6-6.)

• Description

The SPECIAL generator will essentially reduce source code to a
high level formal description of source code information flow.
Translation rules may need to be tailored for applications where
conditions exist that affect theorem proving. For example,
applications that take advantage of known hardware security
features may not reflect this in their source code. In any case,
certain general translation rules can be specified and followed.
In addition, some optimization could be performed during SPECIAL
generation in order to remove any redundant information flows.

• Specification

Input to the Special generator is the parse tree generated by the
STOS parser. Output from the special generator is the special
translation of the Ada source. As a minimum, the following set
of translation rules will be applied to the input parse tree:

- Assignment Statements

a. Every term on the lhs of an assignment statement will
cause a NEWVALUE statement to be generated that is a
function of every term on the rhs of the assignment.

b. The assignment of a variable of structured type to
another variable of the same structured type will produce
as many NEWVALUE statements as there are scalar types
making up the structured type.

c. If a variable of structured type has array type
components, then any identifiers that are used to index
the array are extracted. Information flow is shown from
the array indices on either side of the assignment
statement to the variable on the lhs of the assignment.

- Conditionals

a. Information flows will be shown from all identifiers
appearing in the condition part of the "if" or "else if"
statement to all "outputs" of any statements appearing in
the "then", or "else" part of the "if" statement. All

6-23

PARSE TREE
WITH FIXED AND

FLOATING LABELS

81PISDAIL GENER .ATOR

READ
PARSE TREE

T
TRANSLATE

STATEMENTS

1 r
OPTIMIZE

STATEMENTS

FTLS

Figure 6-6. SPECIAL Generator

6-24

identifiers appearing in the condition are collected, and
an implication statement is generated with these
identifiers placed on the lhs, "while" all statements
within the scope of the "if" will be placed on the rhs.

The "case" construct will be represented as a series of
"if" statements having the same conditional expression.

- Loops

If the loop is named, it will be extracted and stored.
If there are no conditions on the loop then statements
within the loop will be processed as if the loop did not
exist. "If" statements leading to an unconditional exit
will be flagged.

Any identifiers appearing in the iteration scheme of a
"for" statement, existing in the conditional part of a
"while" statement, or representing conditions for loop
exit will be collected and put on the lhs of an
implication, with the rhs representing the translation of
any statements within the loop.

- Parameters and Function "RETURN" Statements

a. "In" parameters will cause a NEWALUE statement to be
generated prior to the EFFECTS_OF statement that shows
flow from the actual parameter to the new name generated
for the procedure's formal parameter list.

b. "Out" parameters will cause a NEWALUE statement to be
generated following the EFFECTS_OF statement that shows
flow from the formal parameter to the actual parameter.

c. "In out" parameters will produce both of the above
results.

d. If a subprogram returns a value, a new name for the
returned value will be made by concatenating the
subprogram name with the phrase "returns". This new name
will be used in any place that the function value is
used. An EFFECTS_OF statement will be placed preceding
the use of the new name

6-25

6.1.8 STOS Automated Tracer

It is desirable to trace system requirements through progressive software
design stages and into the implemented code. Establishment of
correspondence between requirements and code simplifies the problem of
demonstrating that a system is ready to be deployed. Automating this
traceability could decrease the cost of certifying a software
system. [24],[17]

o Description

The STOS cross-compiler could be used to support automated system
requirement traceability. The pre-processor could format
comments that contained requirements identifiers so that the
comment also contained the name of the task or procedure in which
it occurred. This modified source would be suitable for use as
input to the tracer.

o Specification

Tracer inputs shall be a suitably commented Ada source code
module and a numerically organized system requirements list. Ada
source code input shall include comment statements for tasks or
procedures that contain a requirement identifier referencing the
relevant system requirement.

For each numbered requirement in the requirements list, the
tracer shall search the Ada source code comments for a matching
requirement identifier. If a match is found, the tracer shall
identify the task or procedure containing the comment along with
the source code line number. If no match is found, then the
tracer will output the requirement number followed by an error
message.

6.2 STOF CODE VERIFICATION TOOL

A subset of the Ada language can be input to STOF for translation (see
Section 6.3.1). STOF will output a file of formulas that captures all
information flow (as specified in Sections A.2 through A.2.3). In
addition to generalizing formulas about information flow, STOF can
generate a formula file representing proof of correctness properties
found in the Ada source code (see Section 6.3.2). Either one or both
formulas files can be input to a theorem prover.

Proof of correctness for programs is discovered by using predefined
axioms to repeatedly rewrite formal logical statements about the program
until the statements can be proven true. Failing to prove a statement

6-26

true does not always mean that the program is incorrect — it may be the
result of a lack of information in the logical statements about the
program, or insufficient power in the theorem prover.

The major difference in the approaches to MLS analysis and proof of
correctness is the kind of information that is primarily used. In the
case of MLS analysis, information flow is the predominant consideration.
In proof of correctness, control flow and state information are the most
important.

The components STOF are:

• Ada Security Analyzer

Lexical Analyzer
Parser

• Security Graph Generator
• Verification Condition Generator (VCG)

- MLS Flow Analyzer
Proof of Correctness Analyzer
Formatter

• Environment Support Tool

Figure 6-7 shows the STOF cross-compiler. Individual components will be
described in the following sections, and required functionality will be
specified for each component. Details of implementation (i.e., choice of
program source language, type of parser) are left to the implementor.

6.2.1 SOURCE Subset Handled By STOF

Programming language power and flexibility may conflict with clear
representation of information flow. Some language constructs, such as
pointers, can cause information flow that cannot be anticipated or
derived from static examination of the source. Indeed, most languages
include a mechanism for inserting comments into the source code for
clarification of such ambiguities. However, such comments are only
programmer aids and do not represent valid input for a formal
specification. Additionally, program source can be obscure if the source
language does not formally specify the actions resulting from a given
construct. An example can be found in Ada multi-tasking: multi-tasking
is a feature of the language, but how memory allocation is handled during
processing of this feature is not explicitly stated. In such cases it is
not possible to derive accurate formulas specifying information flow and
correctness. Hence, in translation of a source to formulas, the source
language must be restricted to an unambiguous subset that can be formally
stated.

6-27

SOURCE SU15SET

STOF CROSS-COMPILER

ADA SECURITY
ANALYZER

-*

ENVIRONMENT

SUPPORT

TOOL

^ w

1 r

SECURITY GRAPH
GENERATOR

-* ^

•\ r
VERIFICATION

CONDITION GENERATOR
M w

THEOREM PROVER

Figure 6-7. STOS Cross-Compiler

6-28

To determine which constructs of the Ada language will be included in the
Ada subset, each construct must be analyzed for its inherent security
properties. Constructs that are not well-defined with respect to
processing and memory allocation are not suitable for STOF. Such
constructs generate information flows that cannot be definitively
specified with formulas. If non-deterministic information flows were
allowed in the formal verification process, any resulting proofs would
also be non-deterministic. Examples of constructs that fall into this
category are "generic" and "task."

• Description

Certain criteria must be met in order to define an Ada subset
that is both functional and verifiable. Any constructs that
present problems in formula generation must be either omitted or
restricted in the subset. Naturally, restricting the use of a
programming language in this way will inhibit some of its
usefulness in writing applications. Care must be taken to ensure
that the verifiable subset does not significantly limit
programming applications.

During lexical analysis all Ada reserved words are recognized;
however, only those contained in the subset are processed.
Messages will be generated to flag each encountered Ada construct
that is not part of the specified subset (see Table 6-3).

• Specification

Following is a specification containing all Ada constructs that
are included in the subset. All punctuation existing in the Ada
language will be included within the Ada subset. This includes
binary operators (i.e., +, /, -, and *).

<blocks> - These constructs act as headers used in order to
group specific portions of the code. They define the
processing bodies for the program.

begin package
body use
declare with
end

6-29

Table 6-3. Ada Reserved Words Handled By STOF

*abort begin case declare else
abs body constant *delay elsif

•accept delta end
•access digits •entry
all do exception
and exit
array
at

for •generic if •limited
function goto in

is
loop

mod

•new
not
null

of package raise •select
or •pragma range separate
others •private record subtype
out procedures rem

renames
return
reverse

•task
•terminate
then
type

use when
while
with

xor

• Not member of verifiable Ada subset

6-30

declarations and types> - These constructs provide a means
for defining different entities. The type of an item
dictates which operations are permitted on that item.

array
at
constant
declare
delta
digits
exception
function
in
is

of
out
procedure
range
record
renames
separate
subtype
type

<operators> - These constructs represent specific functions
that are to be performed on associated entities.

abs
all
and
mod
not

or
rem
reverse
xor

<statements> - These constructs combine to form a list of all
the possible Ada statements that can be analyzed using STOF.

case
do
else
elsif
exit
for
goto
if

loop
null
others
raise
return
then
when
while

6.2.2 Proof Of Correctness Formulas

With STOF, the Ada subset must be translated into formulas that can be
analyzed for both MLS and proof of correctness properties. In the
specification that follows, the formulas are written in infix format for
ease of understanding and explanation. However, if desired, the formulas
could be represented in other formats as well.

• Description

The following specification describes the statements in the

6-31

subset of Ada appropriate for use as part of an STOF system. A
proof rule (as used by STOF) and a graphical representation of
each statement exist. The proof rule in each case is represented
either as a single expression or as an implication.

Rules that are represented by a single expression are processed
directly by the formula generator. Rules that are represented as
an implication have both an lhs component and an rhs component.
The lhs of the implication is the rule that would be processed by
the formula generator, and the rhs of the implication is the way
the statement would appear in the source.

The following notations are used in the proof rules [25]:

- P - a logical statement

{P) - a logical statement that is a condition that must be
satisfied. Alternately, a pre-condition.

{Q} - a logical statement that is a condition that must be
satisfied. Alternately, a post-condition..

P(N) - the effects of a call to logical statement P with
formal parameter N

- P(X|Y) - in the logical statement P, systematically replace
all occurrences of X by Y

- P(N)(N|A) - the effects of a call to P with the formal
parameter N replaced by the actual parameter A

r(F) - a return statement of a function with the name F

- S - results of processing the program statement(s)
represented by S

- H - attribute and axiom information derived from declarations

«L>> - a label named L

=> - implies

<= - less than or equal to

• Specification

- Null Statements

The null statement in Ada has no effect, and can be
represented by

6-32

{PJ null {PJ

If pre-condition P is true then the post-condition P is true
(unchanged).

Graphic Representation:

c-
IP)

-o
If !

null

Assignment Statements

{P(X|E)) X := E (P)

If all occurrences of X are replaced by E in the logical
statement P, then the statement, X:= E, is true.

Graphic Representation:

(P(XIE)J

o
(p)

Conditionals

a. "If" Statement

Two different proof rules exist depending on inclusion or
exclusion of an else part.

(({P and B) S {0}) and ({P and ~B} => {Q})) =>

if B then
S

end if

6-33

In order to prove the post-condition follovs from the
pre-condition plus the processing, two things must be
proved:

1. The pre-condition P along vith the condition B (equal
to true in this case) and the results of processing S
must imply the post-condition Q.

2. The pre-condition along vith the condition B equal to
false must imply the post-condition Q.

Graphic Representation:

**o
IP) (3)

if.. then...endif

or

({P and B} S {Q)) and ({P and ~B) T {Q)) =>

{P}
if B then

S
else

T
end if
{Q}

The pre-condition P, the condition B if true, and the
results of processing S must imply the post-condition
0.

The pre-condition P, the condition B if false, and
the results of processing T must imply the
post-condition Q.

6-34

Graphic Representation:

+ Q

(P) IB)

it.. th*>p. elr.o. f-ridif

"Case" Statement

"Case" statements are similar to "if" statements in many
ways. The notation E=Ci is used to imply that the
expression E has a value which is selected by the choice
Ci; this is also used to cover the 'when others'
alternative if it is present.

for each i {P and (E = Ci)} Si {Q} =>

{P}
case E is
when CI => SI
when C2 => S2

end :ase
{0}

For each of the possible values of the "case" switch E, the
pre-condition together with the current value and the
processing associated with the current value must imply the
post-condition.

6-35

Graphic Representation:

cer.e F ir wh^n end CES^

"Goto" Statement

A compound statement S containing the statement goto <<L>>,
and not containing the label <<L>>.

{PJ S {Q) or at «L» {R} =>

If pre-condition P is true

1. S terminates normally and (Q) is true

2. Execution of S terminates with a 'goto L' and {R) is true

6-36

Graphic Representation:

NEW EDGE TO T,

FORMER EDGE TO R

£r = ooto<<L>>

'Loop" Statement

a. "While" Statement

{P and B) S {P} =>

{P}
while B

loop
S

end loop
{P and ~B)

The pre-condition together with the processing must show
that the "while" condition B is no longer true and the
"loop" invariant P is still true after (possibly
repeated) processing of statement S.

Graphic Representation:

IP AND B)

-o
IP)

while ... loop .. end loop

6-37

b. "For" Statement

The antecedent of this rule states that for all I between
M and N, if the predicate P is true for all steps up to
(but not including) I, and the statement S is carried
out, then the predicate P will be true for I.

(standard notation '..' is used to indicate intervals)

(M <= I) and (I <= N) and (P([M..I))} S {P(lM..I])J
=>

{pum
for I in M..N

loop
S

end loop
{P([M..N])}

Graphic Representation:

c
I (run AND V J P(IM..I]>
(KN) AND
PCIM..I])]

for ... in .. loon ., end loop

"Exit" Statement

({P} S {Q)> and ({Q and B} T {PJ) =>

(P)
loop

S
exit when ~B;
T

end loop
{Q and ~B}

Two possibilities need to be proved:

1. The pre-condition P together with the processing of
statement S imply the post-condition Q.

6-38

2. The post-condition 0 together vith the condition B
not false and the processing of statement T imply the
"loop" invariant P.

Graphic Representation:

Loop ., ?yit when . end lo op.

Concatenation

This rule describes what is involved in combining two (or
more) statements.

{P} S {Q} and {0} T {R} =>

{P} S T {R}

If two statements are represented by

{P} S {QJ, {R} T {U}

then the statements may be combined if

Q => R

Giving the statement

{P} S T {UJ

6-39

Graphic Representation:

o—rr^—c-* -K)—GD o
iDi > ir. I ir...l 1..1 IP) ICJ.I ICiy]

IP)
C ££} £T} o

 IR]

S,T,0, =>0?

Declarations

a. Type Declaration

Each type declaration results in the generation of
assertions to be added to the set H. The collection of
declarations D is processed until all type declarati
have been removed and their corresponding axioms added
the set H.

H includes all the attributes and associated axioms, etc.
associated with the type T. (Subtype declarations are
similar)

H {P} D begin S end (Q) =>

{P}
type T is .. .;
D

begin
S

end

Uninitialized Variable

H contains information about X derived from its
declaration; this includes its attributes and the axioms
the attributes satisfy. The symbol Tu stands for an
undefined variable of type T.

H {P and X' = Tu} D(X|X') begin S(X|X') end {Q} =>

m
X : T;

6-40

D
begin

S
end

{0}

Each declaration of a variable results in the addition of
assumptions available to the theorem prover. In the case
of an uninitialized variable X,

1. An assertion is made that the variable X' has the
attributes of an uninitialized variable of type T

2. X is replaced throughout the block by X'

c. Initialized Variable

H has the same meaning as in the rule for uninitialized
variables.

H {P and X' = E) D(X|X') begin S(X|X') end {0} =>

{P}
X : T := E;
D

begin
S

end

{Q}

1. An assertion is made that the variable X' has the
attributes of an variable of type T, and is equal to
the value of E.

2. X is replaced throughout the block S by X'.

d. Constant

{P} D(X|E) begin S(X|E) end {Q} =>

m
X : constant T := E;
D

begin
S

end
{0}

X is replaced throughout the block S by the constant
value E.

6-41

- Blocks

D represents a set of declarations of possibly different
varieties and S represents a sequence of statements.

H {P and R] S {Q} =>

IP)
D
begin

S
end

10)

H represents the information including the set of axioms and
attributes derived from the declarations contained in D. R
represents the set of initializations derived from the
declarations of D.

Graphic Representation:

O O S O
H {P AND R) V J <Q)

beoin . end

Subprograms

a. Function

A pre-condition will be associated with the function that
describes the range of values of and the relationships
between the variables. There will also be a
post-condition of some kind that describes the result
obtained by calling the function.

The proof of correctness of a function definition is
independent of the proof of correctness for a call to
that function. When the function is defined, a proof is
carried out showing that if certain pre-conditions are
met, then the processing within the function will
guarantee that certain post-conditions will hold. Vhen
the function is called, then the proof that the

6-42

pre-conditions are met is sufficient to prove that the
post-conditions will hold.

A skeleton declaration of F can be written as

function F(N: ...) return ... is
-pre {P(N)}
-post {0(N,r(F))}

begin
S
end F;

The proof rule for a function call F(A) of function F can
be expressed as

({P(N)J S'; «END» null; (Q(N,r(F))})

and (exists Z s.t. P(N) => Q(N,Z))=>

P(N)(N|A) => Q(N,r(F))(N|A,r(F)|F(A))

Each function definition is maintained as a distinct
graph. The representative top-level graph for a function
is:

Graphic Representation:

c (s") o o
{P(N)J V---/ (Q(N,r(F))) (exists z

P(N)=QCN,2))

function . return . if .. heoin . end

The antecedent of the rule for functions states that:

1. If the input requirements are met, then the value
returned by the function will meet the output
requirement.

2. For every valid input N, there is a function value
that satisfies the output requirement.

The consequent of the rule for functions states that if
the input conditions have been met using the actual
parameters, then the post-condition will hold for those
actuals. For a call of the function the graph is
manipulated in the following manner:

6-43

Graphic Representation:

!P(NIA)=>0(N|A,r(F)|F(A))

r(F) = F(A)

Recursive Function

To cope vith recursion it is necessary to add to the
antecedent a variant of the consequent, such as

P(N)(N|A1) =>

Q(N,r(F))(N|Al,r(F)|F(Al))

This formula states that if an actual Al is supplied to
the function's formal parameter N, then the output
assertion vill be true when the parameter is replaced by
Al and the return value of F is replaced by the recursive
call of the function.

It is possible to extend this formula to functions of
several variables, as veil as to mutually recursive
functions. In order to prove total correctness, it has
to be shown that the evaluation of all parameters vill
terminate and that there is some ordering associated vith
the values of successive parameters. On successive
calls, the values of the parameter must belong to a
veil-founded set, and must decrease.

Procedure

Assuming three formal parameters M, N, and 0 the
procedure T is vritten

procedure T(M: in ...; N: in out ...; 0: out ...) is
— pre {P(M,N)}
— post (Q(M,N,0)}

begin
S

6-44

end T;

The proof rule for the procedure call T is

{P(M,N'in)J S [Q(M,N'in,N'out,0)J =>

(P(M|AfN|B,0|C))
T(A,B,C)
(Q(M|A,N|B,0|C)]

If the pre-condition P(M,N'in) of the procedure T can be
satisfied using the substitutions (M|A), (N|B), (0|C),
then the post-condition will be true (using the same
substitutions).

As vith function definitions, each procedure definition
is represented by a distinct graph:

Graphic Representation:

|P(M,N'i"))

-o
lom.N.o)]

procedure . is . p^o"-' erid

Each call of a procedure causes the following alteration
in the graph:

|P<rilA,N|B)->OCM|A.N!B.OIC>]

The parameters must be shown to satisfy the type
conditions and constraints. These checks can be left to
the compiler. As vith functions the antecedent of the
implication need be proven only once, vith only the entry
condition needing to be proved for each call to the
procedure.

6-45

"Return" Statement

Each return statement

return E;

that appears within a function is replaced hy the pair of
statements

r(F) := expression;
goto END;

where <<END>> (a unique label generated by STOF) and a null
statement are placed at the end of the definition of the
function.

Graphic Representation:

<<Qt»'D>>

<<EMD>>

return

- Globals

Use of globals within a subprogram can be treated in the same
manner as parameters if the following rules are used:

a. Globals accessed for reading purposes only should be
treated as Ada "in" parameters.

b. Globals that are updated directly, or indirectly
using another subprogram, should be regarded as Ada
'in out' parameters.

Exceptions

The effect of a block in which an exception may occur is
equivalent to the effect of either:

a. The normal execution of the statements of the block.

6-46

b. The normal execution of the statements up to the
point where the exception is raised, followed by the
effect of executing the appropriate exception
handler.

Case (a) does not require any modifications to the graph,
because the flow of control is not modified if there is no
exception raised.

Case (b) requires the following modifications of the graph.

a. Each point in the graph that could lead to the
raising of an exception must be identified, along
with the particular exception that would be raised.

b. The exception handlers for each possible exception
must be identified within the graph.

c. The equivalent of an 'if...then...endif' is inserted
at the point where the exception could occur.

1. The node representing the conditional part of the
graph holds the condition that will cause an
exception.

2. The 'then' part of the graph, which is followed
if the conditions causing an exception to be
raised are met, is represented by a jump to the
appropriate exception handler. This is shown as
an edge in the graph leading to the part of the
graph holding the handler.

3. If the conditions leading to an exception are not
met, then the normal flow of control is followed.

The following exceptions are predefined in Ada:

CONSTRAINT_ERROR, NUMERIC_ERROR, PROGRAM_ERROR, STORAGE_ERROR,
TASKING_ERROR

Of this list, all but TASKING_ERROR need to be considered by
STOF.

6-47

Graphic Representation:

(l >:ci in ;IIIJ coijni i IOI,')

erccnt ioris

6.2.3 STOF Ada Security Analyzer

The specification of the STOF Ada Security Analyzer is the same as that
already specified for STOS since both operate on Ada source code input.
(See Section 6.2.2.)

6.2.A STOF Security Graph Generator

The Security Graph Generator takes the parse tree as input and creates a
digraph for use by both the MLS Formula Generator and the Proof of
Correctness Formula Generator. This graph depicts all of the components
and interactions that exist in the system being analyzed. The resulting
graph contains nodes that represent statements (components) and arrovs
that represent relationships (interactions) (see Figure 6-8).

• Description

The use of graphical analysis of a system for MLS has been
demonstrated by the program BTOS. A description of this program
appears in the paper "Examination of Multi-Level Security From
Data Flow Graphs," presented at the 1985 AFCEA Conference on
Physical and Electronic Security, held in Philadelphia,
PA. [9] An extension of the techniques used in BTOS are
appropriate for use in STOF.

The same flov graph may be used by both the MLS flow analysis and
the proof of correctness analysis. The information stored in the
graph is manipulated differently depending on the type of
analysis being performed.

6-48

PARSE TREE

SECURITY GRAPH GENERATOR

GENERATE NODES
AND ARROWS

j

ORGANIZE GRAPH
BY HIERARCHY

1 r

ORGANIZE GRAPH
BY CONNECTIVITY

Figure 6-8. Security Graph Generator

6-49

Nodes are generated for the following constructs (these represent
the verifiable subset of the Ada language):

null, assignment, conditional, goto, loop, exit, return,
block, procedure/function calls, procedure/function
bodys, type/variable/constant declarations, exceptions

o Specification

The graph of two successive statements is made up of the
composition (concatenation) of the graphs of the two statements.
Complex statements are represented by a hierarchy of nodes where
the subnodes are the component statements making up the complex
one. [26]

The following steps are used in transforming the annotated source
into the graph.

- A node is constructed for each logical condition and for each
statement. The types of nodes that can be constructed are:

a. Declarations

type/variable/constant
procedure/function

b. Pre-conditions

c. Statements

d. Post-conditions

Declarations are treated separately from other statements
because, rather than transforming data, they initialize
values and add information to the knowledge base available
when performing proofs on the associated statements.

- Compound statements are decomposed into a hierarchy of nodes.
The top-most node represents the compound statement and each
subnode represents an individual statement within the
compound statement. Subnodes that are themselves
representatives of compound statements are further decomposed
in the same manner.

Decomposition continues until the statement is atomic (cannot
be further decomposed). Atomic statements in the verifiable
subset are those that do not contain other statements, such
as: null, assignment, goto, and exit.

6-50

Statements that cause jumps in the flow of control (such as
goto, exit, raise, return) are analyzed and the edges of the
graph are modified to show the jump.

6.2.5 STOP Verification Condition Generator

• MLS Flow Analyzer

The MLS Flow Analyzer is a VCG that reads the digraph output by
the Security Graph Generator, and creates a set of formulas to
submitted to the Formatter. The first step is to analyze all
paths of the graph for information flow
dependencies. [27] During this phase, labeling and propagation
of the data items occurs. The existing flow dependencies along
with labeling information are represented in the list of formulas
generated by the MLS Flow Analyzer (see Figure 6-9).

- Description

The formal model is a statement of the security policy in a
formal mathematical language. The mathematical language must
be sufficiently powerful to embody the concepts presented in
the security policy. The language must also be amenable to
proofs showing the consistency of the model with the policy
and the internal consistency of the model. Statements made
in the mathematical language must be usable with little or no
translation as requirements of the verification process.

- Specification

The MLS proof of secure behavior proceeds in the following
manner:

a. The source is analyzed to determine all paths through
which information can flow.

b. All information dependencies are collected as a list of
pairs (X,Y), where information flows from X to Y (Y
depends on X). Along with each pair there may be a set
of logical statements that form a pre-condition for flow
of information from X to Y.

c. For each pair, a formula is produced in the form: P =>
lteq(X,Y). This is read as 'if the condition P is true
then the security label of X must be less than or equal
to the security label of Y'. P represents the collected

6-51

GRAPH

MLS FLOW ANALYZER

ANALYZE GRAPH
FOR PATHS

COLLECT INFORMATION
DEPENDENCIES

LABELER

PROPAGATOR

GENERATE FORMULAS

MLS FLOW FORMULAS

Figure 6-9. MLS Flow Analyzer Components

6-52

control/type/etc. information that the flow X -> Y
depends on.

d. Each of the formulas is passed to a theorem prover, which
can be fully automated, interactive, or human.

e. If all formulas generated by steps 1-3 are proved 'true'
by the theorem prover, then the system is secure
(according to the security model, which is implemented by
steps 1,2).

• Proof of Correctness Analyzer

The Proof of Correctness Analyzer is a VCG, and performs some
basic functions similar to the MLS Flow Analyzer. It reads the
digraph resulting from the Security Graph Generator and creates a
set of formulas to be submitted to the Formatter. The first step
is to analyze the graph to find all paths. Logical conditions
that appear on the paths are analyzed to create proof of
correctness formulas (see Figure 6-10).

- Description

Verification conditions (VCs) for a program are composed of
logical formulas from from two sources: the underlying
axioms of the programming language, and the logical
conditions imposed by the program specifications. The
correctness of a program is the problem of solving the series
of logical formulas that lead from the program entry to the
program exit.

Syntactically correct programs are made up of a composition
of atomic statements such as assignment and null. Each of
these operations can be axiomatized and represented as nodes
in a digraph. Program specifications are added to these
nodes as pre-conditions, post-conditions, etc.

The process of generating VCs for a program is that of
finding all paths through the representative graph of the
program and collecting the logical conditions that appear on
those paths.

- Specification

The entry conditions for a block of processing describe the
conditions that the input must meet in order for the output
to be meaningful. If the entry conditions are not met, then
the use of the block cannot be considered correct. If the
entry conditions are met, and the block has been previously

6-53

PROOF OF CORRECTNESS ANALYZER

ANALYZE GRAPH
FOR PATHS

T
ANALYZE

PRE-CONDITIONS AND
POST-CONDITIONS

1 r

GENERATE
FORMULAS

PROOF OF
CORRECTNESS

FORMULAS

Figure 6-10. Proof of Correctness Analyzer

6-54

verified to be correct, then the output conditions of the
block will hold.

The format (see belov) for a proof of correctness of a single
Ada block is

H {P and R) S {0),

where H represents attribute and axiom information derived
from declarations, {P) is the set of pre-conditions, (R)
represents initialization values, S is the processing and {Q}
is the set of post-conditions that must be satisfied. This
format (or an abbreviated version) is used throughout. The
graphical representation of such a block is:

o o s o
H IP AND R] V J (0)

begin end

The specification formally describes the net transformation
of inputs into outputs. The code must be proven to produce
exactly that transformation. Using the input conditions as
assumptions, together with any relevant axioms about the data
structures being used, the processing is analyzed to
determine what inferences can be made about the data after
the block is finished. If the processing is correct, then
the combination of the effects of the processing and the
initial assumptions and axioms should suffice to prove that
the exit conditions hold.

These are conditions that need to be met after a segment of
code has been analyzed and its effects have been calculated.
The exit conditions describe the relationships between and on
data items after processing has concluded. When connecting
several blocks of code, the exit conditions of a block should
imply the entry conditions of the next block. If the entry
conditions plus processing imply the exit conditions in every
block, and the exit conditions of each block imply the entry
conditions of the following block, then the entire collection
will be correct.

Some problems exist with proving total correctness of a
system. [28],[10] There are examples of programs that work,
but for which proofs are elusive. The following program
(which is an implementation of an open problem in number
theory) calculates the number of steps it takes to reduce a
positive integer to 1 using the following rules:

6-55

If the number is 1 then stop.

If a number is even divide it by 2.

If a number is odd, multiply it by 3 and add 1.

This recurrence relation works (apparently) for all integers
greater than zero. There is no known proof that this routine
will always terminate. For all values that have been tried
the routine works. The implementation of the above rules in
Ada would be:

function step(i : integer) return integer is
begin
if (i = 1) then

return 1;
elsif (i mod 2) = 0 then

return step(i / 2) + 1;
else

return step((3 * i) + 1) + 1;
end if;
end step;

This sort of problem would not be acceptable for analysis by
mechanical theorem proving because of the nature of the
parameter i. In order to show that the function terminates,
it must be possible to show that there is a well-founded
relation on the parameter such that the value of the relation
goes down after every invocation of the function. [2]

The standard less than (<) for integers cannot be used as the
well-founded relation on i, due to the possibility that a
recursive call will be made using ((3 * i) + 1), which (for
positive integers) is larger than i. A well-founded relation
for i would have to show that each successive recursive call
of the function is nearer to returning a result than the
last.

The properties of a proof of correctness for this particular
program are:

a. The pre-condition for this program is simple: i > 0.

b. The post-condition is also simple: the return value is
exactly the depth of recursive calls of the function.

c. Proof of partial correctness is possible, as it
corresponds to a proof that the depth of recursion (the
number of steps taken) reached by the function is the
number returned by the function.

6-56

d. Proof of termination of this algorithm is at present an
open problem.

e. Therefore, a proof of total correctness cannot be
produced without a proof of termination.

• STOF Formatter

The Formatter organizes the formulas generated by both the MLS
Flow Analyzer and the Proof of Correctness Analyzer. Output from
this phase is one file containing all of the formulas generated.
This file serves as input to the theorem prover (see Figure
6-11).

- Description

During this phase, any necessary modifications or
enhancements to the formulas can be made. Such enhancements
could include audit information showing the origin of a
formula by procedure name and statement. Also, any
modifications that may be necessary to accommodate a specific
theorem prover can be made at this time. Thus, the porting
of STOF to different theorem prover environments is easily
accomplished.

- Specification

The Formatter will take as input the formulas generated by
both the MLS Flow Analyzer and the Proof of Correctness
Analyzer. If desired, audit information will be appended to
each formula. Modifications that may be needed to
accommodate a specific theorem prover will be performed.
These formulas will be organized into a formulas file to be
submitted to the theorem prover for analysis.

6.2.6 STOF Environment Support Tool

The Environment Support Tool interacts with the Ada Security Analyzer,
the Security Graph Generator, and the VCG. Its function is to automate a
thorough and accurate configuration management of all databases in the
STOF environment (see Figure 6-12).

o Description

The Environment Support Tool controls and maintains STOF data.
Several databases will need to be maintained throughout the life

6-57

MLS FLOW FORMULAS

\
N

PROOF OF
CORRECTNESS

FORMULAS

/

FORMATTER

COLLECT FORMULAS

MODIFY
FORMULAS

ORGANIZE INTO
FILE

FORMULAS FILE

Figure 6-11. Formatter Components

6-58

KDU

ENVIRONMENT SUPPORT TOOL

REVISION CONTROL

GRAPHIC USER
INTERFACE

SOURCE
SUBSET

CONFIGURATION
MANAGEMENT FILES

Figure 6-12. Environment Support Tool

6-59

of the STOF verification process. This tool also manages the
STOF user interface. Ease of use of the STOF approach by either
designers or verifiers will be determined by the power of this
tool. STOF may be used by programmers who require feedback, about
security implications of their code, or it may be used by
verification analysts or members of accreditation or
certification teams. Version control and database consistency
will also be addressed by this tool.

Specification

The STOF Environment Support Tool controls and maintains STOF
data. This tool will be graphically oriented, and will use
windows and color. The following tasks are proposed as part of
the Phase II effort:

- Design capability to perform configuration management on STOF
files and data structures.

- Design capability to maintain source code verification
history.

Design capability for manipulating context of user view of
the generated digraph.

Identify externally referenced modules.

- Track dependencies.

6-60

SECTION 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 CONCLUSIONS

A major advantage to the STOS translation method is the fact that the
language SPECIAL is generated. SPECIAL files provide the user with an
intermediate, readable form which can be analyzed and modified. Also,
automated translation to SPECIAL facilitates timely use of HDM's MLS Tool
and Boyer-Moore theorem prover. This accredited toolset provides an
excellent means for representing information flow. Also, STOS could
provide the user with less unknowns than STOF, while integrating with an
existing, accredited methodology.

One major disadvantage of STOS is that the Boyer-Moore theorem prover and
the HDM methodology itself have limitations. HDM is primarily an
information flow analysis tool, with a built-in MLS model. As such, HDM
is limited in the type of verification applications it supports. For
example, HDM could be used for proof of correctness, but the amount of
work this task would require would not justify the results. Another
disadvantage is that the entire STOS approach takes more CPU time than
the STOF approach, because the generation of a specification language is
bypassed with STOF. STOS will severely limit the type of verification
that can be performed on the source. Its disadvantages can create
significant time and effort costs.

Results of COMPUSEC's Phase I research show that an STOF approach to
verification of source code is more favorable than an STOS approach.
STOF offers innovative technical progress in the field of software
verification. It can be used *o translate a larger subset of the Ada
language than that possible using STOS. It can generate formulas for
both MLS information flow and proof of correctness. It can be tailored
to specific security models and theorem provers. Finally, STOF can be
implemented to perform quickly with a minimum of user intervention. The
Phase II effort will therefore focus on implementing an STOF system.

The following conclusions have resulted from Phase I analysis:

7-1

• STOS

The STOS approach can support translation of a subset of the
Ada language.

Although the STOS approach integrates with a proven, existing
verification methodology, it can be limiting. Security
analysis using the HDM methodology is restricted to
information flow—proof of correctness cannot be handled.

Questions have surfaced concerning HDM's placement on the
NCSC's Endorsed Tools List (ETL). These questions will
affect the recognition and acceptance of analysis
accomplished using STOS.

Using STOS and HDM requires large computer resources and even
more significant time and human intervention in order to
produce proofs.

STOF

- STOF can be used to translate a larger subset of the Ada
language than that possible using STOS.

- STOF can generate formulas for both multilevel secure (MLS)
information flow and proof-of-correctness.

- STOF formulas can potentially be tailored to the requirements
of a specific security model.

STOF output can be formatted to integrate with a particular
theorem prover (i.e., Boyer-Moore, Shostak, or COMPUSEC).

STOF can be implemented on a small hardware/software
configuration (i.e., a single-user workstation).

STOF can be implemented to perform quickly with a minimum of
user intervention.

- STOF could be submitted to the NCSC for inclusion on the ETL.

STOF represents genuine technical improvements for the
application of verification techniques to real systems.

7-2

7.2 RECOMMENDATIONS

Results of COMPUSEC's Phase I research show that an STOF approach to
verification of source code is more favorable than an STOS approach.
STOF offers innovative technical progress in the field of software
verification. It can be used to translate a larger subset of the Ada
language than that possible using STOS. It can generate formulas for
both MLS information flow and proof of correctness. It can be tailored
to specific security models and theorem provers. Finally, STOF can be
implemented to perform quickly with a minimum of user intervention. The
Phase II effort will therefore focus on implementing an STOF system.

7-3

SECTION 8

REFERENCES

1. Feiertag, R. (1980). "A Technique for Proving Specifications are
Multilevel Secure". CSL-109, SRI International, Menlo Park, CA.

2. Purdom, Paul Valton Jr., and Brown, Cynthia A. (1985). The Analysis
of Algorithms. New York, NY: CBS Publishing.

3. Boyer, Robert S. and Moore, J. Strother. (1979). A Computational
Logic. Academic Press, Inc., A Subsidiary of Harcourt Brace
Jovanovich, Publishers, NY.

A. Carnap, Rudolf (1958). Introduction to Symbolic Logic and Its
Applications. New York, NY: Dover Publications, Inc.

5. Kowalski, Robert (1979). Logic for Problem Solving. New York, NY:
Elsevier Science Publishing Co., Inc.

6. Kemmerer, Richard A. (1986). Verification Assessment Study Final
Report. Volumes II,IV, and V. National Computer Security Center,
Office of Research and Development, Fort George G. Meade, Maryland
20755-6000.

7. CSC-EPL-85/001. (1985). "Final Evaluation Report of SC0MP" Secure
Communications Processor. STOP Release 2.1. Department of Defense.

8. National Computer Security Center (1986). "Verification Support."
Draft NCSC Standard Operating Procedure, October 1986, Fort Meade,
MD.

9. Enzmann, Alexander R. (1985). "Examination of Multi-Level Security
From Data Flow Graphs." Philadelphia, PA: AFCEA Conference on
Electronic and Physical Security.

10. Hunt III, H.B. and Rosenkrantz, D.J. (August 1986). "Recursion
Schemes and Recursive Programs are Exponentially Hard to Analyze."
SIAM Journal on Computing. Volume 15, Number 3. Philadelphia, PA:
SIAM Publications.

8-1

11. Aho, Alfred V., Ravi Sethi, and Jeffrey D. Ullman. (1986).
Compiler Principles, Techniques, and Tools. Addison-Vesley
Publishing Company, Mass.

12. ANSI/MIL-STD-1815A-1983. (1983). Reference Manual for the Ada
Programming Language. United States Department of Defense.
Springer-Verlag, NY.

13. Brodie, Leo. (1981). Starting FORTH. Englewood Cliffs, NJ:
Prentise-Hall, Inc.

14. Clocksin, W.F., and Mellish, C.S. (1984). Programming in PROLOG.
Second Edition. Berlin, Germany: Springer-Verlag.

15. Feuer, Alan and Gehani, Narain, Editors. (1984). Comparing and
Assessing Programming Languages Ada, C, and Pascal. Prentice-Hall,
Inc., Englewood Cliffs, NJ.

16. Kernighan, Brian V. and Ritchie, Dennis M. (1978). The C
Programming Language. Prentice-Hall, Inc., Englewood Cliffs, NJ.

17. McDermid, John and Ripken, Knut. (1984). Life Cycle Support in the
Ada Environment. Cambridge University Press, Cambridge, UK.

18. Winston, P.H., and Horn, B.K.P (1981). LISP. Reading, MA:
Addison-Vesley Publishing Company.

19. Teitelman, Warren. (1974). Interlisp Reference Manual. Palo Alto
Research Centers, 3333 Coyote Hill Road, Palo Alto, CA 94304.

20. Hume, J.N.P., and Holt, R.C. (1979). Programming FORTRAN 77: A
Structured Approach. Reston, VA: Reston Publishing Company, Inc., A
Prentice-Hall Company.

21. Silverberg, B., L. Robinson, and K. Levitt. (1980). The HDM
Handbook, Volume II: The Languages and Tools of HDM. SRI
International, Menlo Park, CA.

22. Crow, Judith, et al. (1985). SRI Verification System Version 2.0
User's Guide. California: SRI International Computer Science
Laboratory.

23. Robinson, L. (1979). The HDM Handbook, Volume I_^ The Foundations
of HDM. SRI International, Menlo Park, CA.

24. Luckham, David C. and von Henke, Friedrich W. (1984). "An Overview
of Anna, a Specification Language for Ada". 1985 International
Workshop in Software Specification and Design, August 1985, London,
UK.

8-2

25. McGettrick, A.D. (1982). Program Verification Using Ada. New York,
NY: Cambridge University Press.

26. DeMarco, Tom (1979). Structured Analysis and System Specification.
New York, NY: Yourdon, Inc.

27. Hennie, Fred (1977). Introduction to Computability. Reading, MA:
Addison-Vesley Publishing Co., Inc.

28. Mehlhorn, Kurt (1984). Data Structures and Algorithms 2_^ Graph
Algorithms and NP-Completeness. Berlin, Germany: Springer-Verlag.

8-3

APPENDIX A

CANDIDATE LANGUAGE EVALUATIONS

A-l

A.l UNWEIGHTED CRITERIA VALUE EXPLANATIONS

Unweighted Criteria Evaluations
(1 of 4) |

NAME | VAL | CRITERIA |

STANDARDIZATION | 1

MIL-STD, |
ANSI, ISO,
Other

1

2

3

-Implementation is popular, but
no clear standard.
-Published standard, but may not
be rigorous

-Extremely rigorous standard.

CODE STRUCTURE | 1

Process/Task Use 1
2

3

-Very difficult to use
-Generic, non-complex
mechanisms for creation
-Process/task creation is
supported, intertask Ctrl
is defined by language

Flow Control 1

2

3

-Control is difficult AND
mechanisms are difficult
to translate

-Control is difficult OR
mechanisms are difficult
to translate

-Extensive ctrl. structures
and easy to translate

Stmt. Eval. Order 1
2
3

-Very ambiguous
-Some ambiguity
-Deterministic, no ambiguity

Recursion 1

2
3

-Natural part of language, so
is hard to analyze security

-Recursion is possible
-Recursion not possible, making
security analysis easier

Backtracking 1

2
3

|-Natural part of language,
therefore hard to perform
static analysis

|-Parts of language use this
j-Not normally used, easier

to perform static analysis

A-2

Unweighted Criteria Evaluations
1 (2 of 4) |

| NAME |

| AMBIGUITY

i
 <

n
 >

i

i
 t

- CRITERIA |

Scoping 1

2

3

-No scoping mechanisms,
difficult to resolve names
-Sometime difficult to
resolve names

-Name can always be resolved

| Type Coercion 1
2

3

-Minimal type checking
-Usually INT<=>REAL coercions
but some ambiguity in info
flow

-Rules are unambiguous, OR
coercion not allowed

Parameter Passing 1

2

3

-Total absence, OR lack of
clear mechanisms

-Some difficulty or ambi-
guity in mechanisms
-Clearly defined mechanisms,
often used

| VISIBILITY

Hierarchies 1
2
3

-Flat, or 1 level
-2 levels
-More than 2 levels

Data Hiding 1
2
3

-Not allowed in language
-Implicitly defined
-Explicitly definable

| Data Flow 1

2
3

-Many constructs obscure data
flow

-Some obscurity
-Source and destination of
data are always known

A-3

Unweighted Criteria Evaluations
(3 of 4)

NAME VAL CRITERIA

DATA REPRESENTATION

Abstract Data Types -Some types exist, but
can't create new types
-Hard to define/create
-Rich set of techniques
for creating and defining

Data Separation 1

2

3

-Self-modifying code
is possible
-Separation of code and
data is optional
-Distinct separation of
code and data

A-4

Unweighted Criteria Evaluations
1 (A of 4) |

| NAME |

| INTERFACES

VAL CRITEPIA |

Operating System 0

1
2

3

-Language is self-standing,
doesn't allow OS service
access

-Very limited access to OS
-Limited access through
some predefined functions

-Easy access to extensive
OS services

| Application Module 1

2

3

-Multiple modules not
allowed, or interface is
highly ambiguous
-Difficult to determine inter-
faces between modules

-Explicit definition of all
interfaces to all components

| I/O 0

1

2
3

-Not defined as part of
language

-Limited constructs AND diffi-
cult to perform static analysis

-Limited constructs
-Rich construct set with
direction-specific info

User 1

2
3

-Many discreet program deve-
lopment steps, hard to read
code
-Language supports readable code
-Comprehensive environment,
tools available to support
ease of program construction

A-5

A.2 UNWEIGHTED LANGUAGE EVALUATIONS

Ada

| CRITERIA | EVALUATION | VALUE |

| STANDARDIZATION | Total: | 3 1

| MIL-STD
1
| ANSI

| ISO

| Other

-MIL-STD-1815 | 3

| CODE STRUCTURE | Total: 13 |

Process/Task Use

Flow Control

Stmt. Eval. Order

Recursion

Backtracking

-Excellent task management
Handles creation and mani-
pulation of process/tasks,
Static analysis can be used
on mechanisms provided

-Rich set of control
structures. Static analysis
can be used on them

-Highly deterministic,
even ambiguities are de-
fined

-Supported, but language
doesn't depend on it

-Used to bind context depen-
dent identifiers

3

3

3

2

2

| AMBIGUITY Total: 9 1

Scoping

Type Coercion

Parameter Passing

-Strict rules provide
excellent info for static
analysis, "private" con-
struct can reduce ambi-
guity "generic"construct
can cause it. Some context
dependent var. function,
and procedure instances

-Supported, with well
defined results

-All modes explicitly
defined. Defined ambigu-
ities in array and re-
cord passing.

3

3

3

A-6

Ada

| CRITERIA EVALUATION VALUE |

| VISIBILITY Total: j 9 I

Hierarchies

Data Hiding

Data Flow

-One of the most structured
hierarchies for program
creation

-Rich set of constructs
(e.g.'package')

-Discernible through static
analysis. Easily represented
between modules

3

3

3

| DATA REPRESENTATION Total: 5 |

| Abstract Data Types

Data Separation

-Supported

-Can be used correct-
ly or incorrectly

3

2

| INTERFACES Total: 10 |

Operating System

j Application Module

| I/O

User

-Well defined and flexible

-Explicitly well defined

-Std libraries available

-Readability allows
manual or machine analysis

3

3

2

2

A-7

BASIC 1
| CRITERIA EVALUATION | VALUE |

| STANDARDIZATION Total: | 1 1

| MIL-STD

| ANSI

| ISO

| Other -Microsoft BASIC, many
other implementations

1

| CODE STRUCTURE Total: 10 |

Process/Task Use -No facility for handling 1 |

Flow Control -Primitive branching 1

Sttnt Eval. Order

Recursion

-Often line by line
interpretive, but imp-
lementation dependent

-Not supported

2

3

Backtracking -Not part of language 3

| AMBIGUITY Total: 6 1

Scoping -Not there 3

Type Coercion j-Not supported 2

Parameter Passing |-One-line functions only 1

| VISIBILITY | Total: 3 1

Hierarchies

Data Hiding

|-Not supported ''flat
structure)

|-Not supported

1

1

Data Flow l-Insufficient structures to
delineate dependencies

1

A-8

| BASIC

| CRITERIA | EVALUATION

| DATA REPRESENTATION | Total:

VALUE |

2 I

Abstract Data Types j-Not supported 1

Data Separation |-Language allows modifi- 1
cation of running code

| INTERFACES | Total: | 8 |

Operating System j-Limited

| Application Module |-Overlay mechanism is
| highly ambiguous

I/O j-Limited

User j-Provides total envi-
ronment

2

1

2

3

A-9

| CRITERIA |

C 1

EVALUATION | VALUE |

| STANDARDIZATION | Total: | |

| MIL-STD

| ANSI

ISO

Other

-In progress

-Kernighan & Ritchie,
many extensions of this

1

2

| CODE STRUCTURE | Total: | 12 |

Process/Task Use

Flow Control

Stmt Eval. Order

Recursion

Backtracking

-Fork() and semaphores

-Clear except for conditional
exp. eval (some data flow
only visible at runtime)

-Sequential, clearly
specified

-Supported, but not typical-
ly used

-Not part of language

2 |

2

3

2

3

| AMBIGUITY | Total: 7 |

Scoping |-Strong scoping rules, but
same name can be used for
different instances

Type Coercion |-Implicit type coercion
| without warning or error,
but strong type check is
possible

Parameter Passing j-Call by value is only
| mech. provided

2 1

2

3

| VISIBILITY | Total: 1 1 1

Hierarchies

Data Hiding

Data Flow

-All subprograms at second
lexical level

-Separate compilation,
static storage class

-Suitable for static analysis

2

2

2

A-10

C

| CRITERIA | EVALUATION | VALUE |

| DATA REPRESENTATION | Total: | 4 |

Abstract Data Types j-Limited: supports derived 2
| and renamed data types

Data Separation j-Can be used or abused 2

| INTERFACES | Total: | 8 |

Operating System

| Application Module

| I/O

User

-Exceptionally good (fork
and exec)

-Not required, linker
addr. resolution obscure

-Std. libraries available,
but no built-in facility

-Many steps in dev. pro-
cess. 'Several (many!) pass'
compilers

3

1

2

2

A-ll

| CRITERIA !

FORTH

EVALUATION | VALUE |

| STANDARDIZATION Total: | 1 |

1
MIL-STD

| ANSI
1
ISO

| Other
1

-FORTH Interest Group
some std. functions

1

| CODE STRUCTURE Total: | 11 |

Process/Task. Use

Flow Control

Stmt Eval. Order

Recursion

Backtracking

-Stackframe maintenance
or Concurrent FORTHs
-Clearly defined, except
'LEAVE' construct allows
jump to end of loop
structures

-Strictly reverse polish,
but can change or effect
code in mid-operation

-Not part of language

-Not part of language

2 I

1

2

3

3

| AMBIGUITY Total: 5 |

Scoping

Type Coercion

Parameter Passing

-All vars and subprograms
are global. Difficult to
resolve name or symbol

-Not there

-None, except global
| stack(s)

1

3

1

A-12

FORTH

| CRITERIA | EVALUATION | VALUE |

| VISIBILITY | Total: | 5 |

Hierarchies |-Unrestricted nesting

Data Hiding |-All components always
accessible

Data Flow |-Non-deterministic for
static analysis

3

1

1

| DATA REPRESENTATION | Total: | 3 |

j Abstract Data Types

Data Separation

-Extremely difficult to
implement/simulate

-Can be used well or
abused

1

2

| INTERFACES | Total: | 4 |

Operating System

| Application Module

| I/O

User

-Is small kernel, not
used from OS
-One program at a time,
interfaces through stack
only
-Limited and diffi-
cult to analyze

-Interpretive code
can be made readable

0

1

1

2

A-13

FORTRAN

| CRITERIA | EVALUATION | VALUE |

2 I | STANDARDIZATION | Total: |

MIL-STD

| ANSI

ISO

Other

-FORTRAN 77

-VATFOR, VATFIV, FORTRANIV,
et al

1

1

| CODE STRUCTURE Total: | 11 |

Process/Task. Use

Flow Control

Stmt Eval. Order

Recursion

Backtracking

-Very difficult using
only FORTRAN constructs

-Some richness in
control structures

-Line by line, some
ambiguities

-Not part of language

-Not part of language

1 |

2

2

3

3

| AMBIGUITY Total: 6 I

Scoping

Type Coercion

Parameter Passing

-Global vars. (COMMON block)
Explicit local var. decla-
ration or implicit local
declaration using default
type. Difficult to tran-
slate, complex static
analysis
-Explicit type change:
Int.<=>Real, Left side
of assgnmnt dominates mode

-Strictly by reference-
copy in copy out

2

2

2

A-14

FORTRAN

| CRITERIA | EVALUATION | VALUE |

| VISIBILITY | Total: | 7 |

Hierarchies
Data Hiding

Data Flow

-Program can be 2-level tree
-Implicit in some parts of
language

-No indirect flows in assign-
ment stmts, COMMON block va-
riable value relates to
param. pass mech., and or-
der of alias assgnmnt in
subprogram. Mechanized
translation candidate

2
2

3

| DATA REPRESENTATION Total: 3 1

Abstract Data Types

Data Separation

-Creation not supported,
only existing types
-Normally separated

1

2

| INTERFACES Total: 5 |

Operating System

Application Module

I/O

User

-Very few std. interfaces

-Some checks occur only at
run-time. Difficulties
for static analysis

-Limited. Difficulties
for static analysis

-Many dev. steps. Flat
code not very readable

1

2

1

1

A-15

LISP

| CRITERIA | EVALUATION | VALUE |

| STANDARDIZATION | Total: | 1 |

| MIL-STD

| ANSI

ISO

| Other -Common LISP, Interlisp,
MACLISP,Franzlisp, contain
some common features

1

| CODE STRUCTURE | Total: | 9 |

Process/Task Use

Flow Control

Stmt Eval. Order

Recursion

Backtracking

-Not a natural part of
the language.

-Function evaluatr'.on, loops,
branching, iterated state-
ments (i.e. for loops) are
supported in some LISPs.

-Normal evaluation is through
list processing. Expres-
sions are in unambiguous
prefix notation.

-Directly supported

-Certain operations im-
plement backtracking, in
particular pattern mat-
ching procedures.

1 |

2

3

1

2

| AMBIGUITY Total: 6 |

| Scoping

Type Coercion

Parameter Passing

-Variables are visible in
the scope in which they
are defined, and within any
functions descendent from
the scope in which they
are defined.

j-No type checking,
coercion is normally only

| used in arithmetic ex-
pressions.

j-Call by value, always
| hands a value in

2 1

1

3

A-16

1
| CRITERIA |

| VISIBILITY |

Lisp

EVALUATION | VALUE |

Total: | 10 |

Hierarchies

Data Hiding

Data Flow

-Unrestricted nesting of 3
function calls.

-Some explicit functions 3
are provided to implement
it.

-Can be readily determined 2
except for cases per-
forming assignments through
indirection (i.e. (SET A B)
sets the variable pointed
to by A to the value poin-
ted to by B).

| DATA REPRESENTATION Total: | 4 \

| Abstract Data Types

Data Separation

-Support for records,arrays 3
and hash tables is typical
-Self-modifying code is 1
natural part of language

| INTERFACES Total: | 9 |

Operating System

Application Module

I/O

User

-Implementation dependent, 1
normally little inter-
action happens with the
OS other than file mani-
pulation.

-No checks except at 2
run-time

-Extensive 10 and text mani- 3
pulation functions are
provided.

-Debugging and editing 3
functions are part of the
language.

A-17

| CRITERIA |

| STANDARDIZATION |

MODULA-2

EVALUATION |

Total: |

VALUE |

3 1

| MIL-STD

| ANSI

| ISO

| Other -Nicklaus Wirth 3

| CODE STRUCTURE | Total: | 12 |

Process/Task Use

Flow Control

Stmt Eval. Order

Recursion

Backtracking

-Loosely coupled processes
Ideal for data flow analy-
sis

-All the mechs. supported
by PASCAL, plus a few more
Use of ptrs can obscure flow

-Sequential, not
rigorously defined

-Supported

-Not part of language

3

2

2

2

3

| AMBIGUITY | Total: | 9 |

Scoping

Type Coercion

Parameter Passing

-Well defined, suitable for
static analysis

-Coercion is definable

-Veil defined, call by ref,
call by value

3

3

3

| VISIBILITY | Total: | 9 |

Hierarchies

Data Hiding

Data Flow

-Unrestricted; foundation
of language

|-Explicitly supported

|-Excellent mechs. for
data flow analysis

1 3 |

3

3

A-18

MODULA-2

| CRITERIA EVALUATION VALUE |

| DATA REPRESENTATION Total: 5 |

| Abstract Data Types

Data Separation

-Rich constructs

-Can be used or abused

3

2

| INTERFACES Total: 8 !

Operating System

Application Module

I/O

User

-No well defined method of
access to OS; can be used
to create self-standing sys

-All interfaces are explicit
and suited for static analy-
sis

-Uses standard utility
modules
-Highly interactive, supports
checking, yields readable
code

0

3

3

2

A-19

PASCAL

| CRITERIA | EVALUATION | VALUE |

| STANDARDIZATION Total: | 2 I

MIL-STD

| ANSI

| ISO

Other

-Standard exists

-Standard exists

1

1

| CODE STRUCTURE Total: 11 1

Process/Task. Use

Flow Control

Stmt Eval. Order

| Recursion

Backtracking

-Only available in exten-
ded versions

-Well defined, but ptrs.
can obscure flow

-Sequential, not well
defined, but most imple-
mentations follow stan-
dard parsing
-Supported

-Not part of language

2 I

2

2

2

3

| AMBIGUITY Total: 8 1

Scoping

Type Coercion

Parameter Passing

-Well defined, suitable
for data flow analysis

-Some support

-Well defined, call by ref,
call by value

3

2

3

A-20

PASCAL

| CRITERIA | EVALUATION | VALUE |

| VISIBILITY | Total: | 8 |

Hierarchies

Data Hiding

Data Flow

-More than 2 levels of
subprograms possible

-Supported in simple and
derived types, also by
using scoping
-Suitable for static analysis

3

2

3

| DATA REPRESENTATION | Total: | 5 |

Abstract Data Types

Data Separation

-Supported

-Can be used or abused

3

2

| INTERFACES | Total: | 8 |

Operating System

j Application Module

| I/O

User

-No exception handling
facility specified

-Modular compilation not
supported in std., but most
implementations support it

-Not part of original
specification

-Supports a lot of checks,
yields readable code

2

2

2

2

A-21

PL/M 1
| CRITERIA | EVALUATION | VALUE |

| STANDARDIZATION | Total: | 3 |

MIL-STD

| ANSI

ISO

Other -Intel language 3

| CODE STRUCTURE | Total: | 13 |

Process/Task Use

Flow Control

Stmt. Eval. Order

Recursion

Backtracking

-Process/task management is
supported to some extent
-PASCAL+C combination, rich
constructs, easy to tran-
slate

-Somewhat ambiguous

-Supported, but can be
turned off

-Not part of language

2 I

3

2

3

3

| AMBIGUITY Total: 7 |

Scoping

Type Coercion

Parameter Passing

-Well defined rules will
aid data flow analysis

-Pointer types cause
ambiguity

-Call by value, mech.
well-defined

3

1

3

| VISIBILITY Total: 8 1

Hierarchies

Data Hiding

Data Flow

-More than 2 levels of
subprograms possible

-Supported at the subpro-
gram level, like PASCAL
-Suitable for static

| analysis

3

2

3

A-22

PL/M

| CRITERIA | EVALUATION | VALUE |

| DATA REPRESENTATION | Total: | 3 |

j Abstract Data Types

Data Separation

-Limited. C-like 2

-Doesn't support data/code 1
separation

| INTERFACES | Total: | 9 |

Operating System

| Application Module

| I/O

User

-Can call predefined OS
routines, or install user
defined exception handlers
-Well defined, deter-
ministic

-Not language relevant

-Customizable for
individual applications,
yields readable code

3

3

0

3

A-23

1 PROLOG 1
| CRITERIA

| STANDARDIZATION

| EVALUATION

1 Total:

II i
ii i
II i

w

II i
5

II i
_3 11

i-t 1
<

 II 1
>

 II II 1

MIL-STD

ANSI

ISO

Other -Clocksin and Mellish,
but non-standard predicates
abound, many different
environments

| CODE STRUCTURE

Process/Task. Use

Flow Control

Stmt. Eval. Order

Total: | 10

3

Recursion

Backtracking

-Program is a conjunction
of goals satisfiable
through use of processes
-Fact causes immediate
satisfaction of goal,
reduces task to subgoals
-Attempts left to right
3 attribs: position,
precedence class, and asso-
ciativity. Brackets or
associativity disambiguate
expressions
-Recursive goal instantia-
tions automatically
evaluated
-Initiated when goal cannot
be satisfied

AMBIGUITY

Scoping

Type Coercion

Parameter Passing

Total: 6

2

1

3

-Non-deterministic, can make
translation difficult,
variable value accessible
only within single clause
-Type checking not usual,
Arith. assgnmnt must be num-
bers for rule to succeed
-Well-defined mechanism
used to pass values between
program parts

A-24

| PROLOG

| CRITERIA | EVALUATION |

| VISIBILITY | Total: |

1
VALUE |

5 |

Hierarchies j-All definition at 1 level 1

Data Hiding |-Implicit in parts of 2
language

Data Flow j-Several clauses may 2
j affect same data

| DATA REPRESENTATION | Total: | 3 |

j Abstract Data Types j-Limited 2

Data Separation j-Code and data are 1
I same

| INTERFACES | Total: | 5 |

Operating System j-Self-standing, doesn't
interface with OS

Application Module |-Doesn't deal with program
modules, rather with
sets of data

I/O j-Limited

User j-Provides comprehensive
user environment

0

1

1

3

A-25

SNOBOL 1

| CRITERIA | EVALUATION | VALUE |

| STANDARDIZATION Total: | 1 1

MIL-STD

| ANSI

ISO

| Other -Many different imple-
mentations

1

| CODE STRUCTURE Total: 8 1

Process/Task. Use

Flow Control

Stmt. Eval. Order

Recursion

Backtracking

-No mechanisms

-Branching depends on success
or failure of pattern mat-
ching, structured code
not possible

-Line by line, conditional-
ly on success of rule
Left to right within order
of precedence, except ex-
ponentiation (right to left)

-Not possible

-Not explicit, but used for
pattern matching of strings.
Some Ctrl possible using
'FAIL','FENCE',and'ABORT'

1

1

2

3

1

| AMBIGUITY Total: 8 1

Scoping

Type Coercion

Parameter Passing

-Name can refer to other
names

-Not applicable

-Strictly call by value

2

3

3

A-26

SNOBOL

| CRITERIA |

| VISIBILITY

EVALUATION |

Total: |

VALUE |

6 I

Hierarchies

Data Hiding

Data Flow

-2 levels of functions
exist

-Implicit

-Indirection is often
used; hard to follow

2

2

2

| DATA REPRESENTATION Total: 3 I

| Abstract Data Types

Data Separation

-Non-existent

-Can be used or abused

1

2

| INTERFACES Total: 4 I

Operating System

j Application Module

I/O

User

-Limited, difficult to
implement

-Can be defined, but not
usually part of lang.
-Limited to RW of strings

-Many steps in dev. process

1

1

1

1

A-27

A.3 WEIGHTED LANGUAGE EVALUATIONS

II II 1
II U

 II 1
II II 1
+

+
 1

II II 1
II W

 <
 W

 H
 U

 II 1
II II 1

II II
II

<
 a

 <
 II

II II

II II
II II
II II
II II
II II
II II 1
II II
II H
II II
II II
II <

 H
II M

 II
II O

S II
II W

 II
II H

 II
II M

 II
II 0

4
 II

II U
 II

II II

F | F |
0 | 0 j
R R
T T
H j R

j A
1 N

•===+===H

L |
I
s
P

• = = = H

M | P | P | P | S |
0 j A j L | R | N
D j S | M | 0 j 0 |
U | C j | L | B j
L j A j | 0 j 0 j
A j L j | G 1 L j

•===+===+===+===+===+

| STANDARDIZATION || | |
(10) j15 | 1 2 1 3 1 3 | A 3 | 1 1

| MIL-STD || 3 | 0 | 0
| x5 ||15 | 0 | 0

| ANSI || 0 | 0 | 0
| x2 | | 0 | 0 | 0

0 | 0
0 | 0

0 | 1
0 | 2

0
0

0
0 O

 O

1
 o

 o

N
 H

1

 O
 O

O
 O

1

 o
 o

O
 O

1

 o
 o

o
 O

1
 o

 o

| ISO | | 0 | 0 | 0
j x2 j| 0 | 0 | 0

0 | 0
0 | 0

0
0

0 | 1 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 |

| Other || 0 | 1 | 2
| xl || 0 | 1 | 2

1 1 1
1 1 1

1
1

3 | 0 | 3 | 1 | 1 |
3 | 0 | 3 | 1 | 1 |

| CODE STRUCTURE || | |
(20) |57 28 |43 A8 133 30 51 |A1 |A8 |A9 |26

| Process/Task Use || 3 | 1 | 2
| xlO ||30 |10 120
 ++

| Flow Control || 3 | 1 | 2
x5 j 115 | 5 110
 ++

| Stmt. Eval. Order || 3 | 2 | 3
| x2 || 6 | A | 6
 ++

| Recursion 2 ' 3 | 2
j x2 || A j 6 | A

2 | 1
20 110

1 1 2
5 110

| 2 | 2
A | A

| 3 | 3
6 | 6

1
10

1 2
110

1 3
1 6

| 1
1 2

3 | 2 | 2 | 3 | 1 |
30 |20 |20 130 |10 |

1 2 | 2 | 3 | 2 | 1 |
110 110 J15 110 | 5 |

1 2 | 2 | 2 | 3 | 2 |
| A | A | A j 6 | A

| 2 | 2 | 3 | 1 | 3 |
| A | A | 6 j 2 | 6

Backtracking 2 3 3
| xl | | 2 || 3 | 3

| 3 | 3
| 3 | 3

1 2
2

| 3 | 3 | 3 | 1 | 1 |
| 3 I 3 j 3 U 1 1 |

-++-

A-28

II

+

II
<

II II

1—1 1
II II O

S 1
II II W

 1
II II

H
 I

H
U

M
 1

II II PS
II O

+ +

A |
D
A

B I
A
s
I
c

c 1 F|F|L|M|P|P|
0|0|I|0|A|L|
RR|S|DS|M
T j T j P | U j C j
H j R j L | A |

j A j j A j L j
j N j

P | S |
R j N
0 | 0 |
L j B j
0 0
G | L

| AMBIGUITY
(20) ||60

| Scoping | | 3
x6 || 18

46

3
18

50

2
12

28 |40 |46 |60 |56 |52

1 | 2 | 2 | 3 | 3 | 3
6 12 j12 j18 18 18

46 154

2 | 2 |
12 |12 |

Type Coercion || 3
| x4 || 12

2
8

2
8

3 | 2 | 1 | 3 | 2 | 1
12 j 8 | 4 |12 | 8 | 4

1 | 3 |
4 112 |

Parameter Passing || 3
j xlO j |30

1
10

3
30

1 | 2 | 3 | 3 | 3 | 3
10 j 20 130 |30]30 130

3 | 3 |
30 | 30

| VISIBILITY
(15) ||45 15 36 25 136 139 |45 |41 |41 25 |30 |

Hierarchies 3
| x5 ||15
 ++

| Data Hiding | | 3
j x4 jl 12
 ++

| Data Flow | | 3
x6 ||18

1
5

1
4

1
6

2
10

2
8

3
18

3 | 2 | 3 | 3 | 3 | 3
15 j10 |15 |15 |15 |15

1 | 2 | 3 | 3 | 2 | 2
4 | 8 |12 j12 | 8 | 8

1 | 3 | 2 | 3 | 3 | 3
6 118 112 j18 j 18 118

1 1 2 |
5 110 |

2 | 2 |
8 | 8 |

| 2 | 2 |
12 | 12

| DATA REPRESENTA- |
TION (15)

| Abstract Data
Types

1 xlO |

40

3
30

115

| 1
110

30

1 2
20

35 |20 |35 |40 j40 |25

|3|1|3|3|3|2
| 30 10 |30 130 130 j20

|25)20 |

1 2 | 1 |
|20 |10 |

Data Separation
x5

2
110

| 1
5

1 2
110

|1|2|1|2|2|1
j 5 j 10 || 5 110 j 10 j 5

1 1 1 2 |
| 5 |10 J

A-29

II

II
i

ii

n

ii
i

n

»

II
1

 II

H

II

II

 H

II
ii

m

n
II

73

 II

II

 l
-H

 II

II

 >

II
II

II
II

II
1

II

II
1

II

II
1

II

II
II

II
II

II
1

II

II
II

II
1

II

II

II

II
II

>

O

>

II

i

II

II

B | C | F
A j | 0
S j R
I | T
C j | H

F|L|M|P|P|P|S|
OjI|0|A|L|R|N
RJSJDJSJMJOJO
T|P|U|C| | L j B |
R | L | A 0 0
A j j A | L j j G | L j
N j

| INTERFACES | |
(20) | 53 3A |37 117 30 |A2 |43 |A0 A5 |19 |20 |

Operating System 3
| x5 ||15

2 | 3 | 0
10 |15 j 0

1 | 1 | 0 | 2
5 | 5 | 0 |10

3 | 0 | 1 |
15 | 0 | 5 |

| Application 3
Module |2A

| x8 ||

1 | 1 | 1
8 | 8 | 8

2 | 2 | 3 | 2
16 116 124 116

3 | 1 | 1 |
2A j 8 | 8

| I/O | | 2
1 x5 ||10

2 | 2 | 1
10 |10 | 5

1 | 3 | 3 | 2
5 |15 |15)10

0 | 1 | 1 |
0 | 5 | 5 |

| User || 2
x2 | j A

3 | 2 | 2
6 A A

| 2 | 3 | 2 | 2
A | 6 j A | A

| 3 | 3 | 1 |
6 | 6 2

A-30

A.4 SUMMARY LANGUAGE EVALUATION

| CRITERIA ||A|M|P|P|C|L
j D | 0 j A j L | | I
| A | D | S | M | ! S

1 D | C 1 | P
| L | A j
j A | L |

| TOTALS ||270|242|222|214|198|193

| STANDARDIZATION || | | | | |
(10) |15 1 3 | 4 [3 1 2 1

P | F | F | S | B |
R | 0 | 0 j N | A
0 | R j R j 0 | S |
L j T j T | B | I
0 | R j H j 0 | C
G j A j | L j

1 N |

165|163|154|151|139|

1 3 | 1 1 1

| CODE STRUCTURE || | | | | |
(20) j57 j51 |41 148 |43 | 30

| AMBIGUITY || | | | | |
(20) j60 |60 56 [52 |50 |46

| VISIBILITY 1 1 1 1 1
(15) ||45 |45 |41 |41 |36 |39

49 |33 |48 |26 |28

46 |40 |28 |54 |46

25 |36 |25 |30 |15

| DATA REPRESENTA- || | | | | |
TION (15) j40 |40 j40 j 25 30 35 25 |20 |35 |20 |15

| INTERFACES 1 1 1 1 1
(20) | 53 |43 |40 |45 37 |42 |19 |30 |17 |20 134

=++=

A-31

APPENDIX B

SAMPLE STOF EXAMPLE

B-l

B.l ADA SOURCE CODE

— Function to compute the greatest common divisor of a,b.

function gcd(a,b : natural) return natural is
— pre(true)
— post(r(gcd) = gcd(a,b))

u : integer := a;
v : integer := b;
v : integer;

begin
while (v > 0) loop
— {(gcd(a,b) = gcd(u,v))}
w : = u mod v;
u := v;
v := w;

end loop;

return u;
end gcd;

B.2 GRAPH OF GCD GENERATED BY STOF

(See Figure B-l)

B.3 PROOF OF CORRECTNESS OF GCD

There are two parts to the proof of correctness: proof of partial
correctness, and proof of termination. The formulas for the proof of
correctness are taken directly from the conditions and assumptions
appearing on the representative graph of the function. These formulas,
when proven, show that the preconditions of gcd plus the processing in
gcd imply the postconditions of gcd.

I) FORMULAS

The following formulas must be proven true in order to show the
partial correctness of gcd:

A) The first formula generated establishes that if the entry
conditions for the procedure along with information deduced from
the type and variable declarations are correct, then the
preconditions for processing are met.

B-2

Precond i 11 on={t rue J
O

Postcondition=(r(gcd)=gcd(a,&)j

* (u=aJv=b,a>0Jb>0J
-KD •
gcdl.1

[acd(a,b)=gcd(u,v)J [v>0)

 *0 K3
gcd.2.1

r(gcd)=u)-

(acd(a,b)=gcd(u,v)J (~v>0j

gcd.2.5

gcd.2.3.1 acd.2.3.2 gcd.2.3.j

Figure B-l. STOF Graph of GCD

B-3

{true and (u = a) and (v = b) and (a > 0) and (b > 0)) =>
{gcd(a,b) = gcd(u,v)}

The lhs of the formula is generated from the precondition for the
function gdc, and from the variable and type decalarations node
(gcd.1.1). The rhs of the formula is from the preconditions for
the first statement in the procedure (gcd.2.1 and gcd.2.2).

B) The second formula establishes that if the preconditions for the
loop statement are met, and the loop condition is true, then the
processing of the loop will maintain the loop invariant.

{(gcd(a,b) = gcd(u.v)) and (v > 0)}
[(w = u mod v)(u = v)(v = w)] => {(gcd(a,b) = gcd(u,v)}

The lhs of the formula is generated from the preconditions for
the loop (gcd.2.1) and the loop ocndition (gcd.2.2). The rhs is
generated from the postcondition for the loop (gcd.2.4) which is
also referred to as the loop invariant.

C) The third formula establishes that when the loop is terminated
the loop invariant is true (which shows that the processing
within the loop is correct) and the postconditions for the loop
statement are true.

{(gcd(a,b) = gcd(u,v)) and ~(v > 0)} =>
{(gcd(a,b) = gcd(u.v)) and (v = 0)}

The lhs is generated from the loop invariant (gdc.2.1) and the
negation of the loop condition (gcd.2.2). The rhs is from the
loop invariant (gcd.2.4) and the termination condition for the
loop (gcd.2.5).

D) The fourth formula establishes that if the precondtions for the
return statement are met, and the expression in the return
statement is evaluated then the postconditions for the procedure
gcd will be met.

{(gcd(a,b) = gcd(u,v)) and (v = 0)}[r(gcd) = u] =>
{r(gcd) = gcd(a,b)}

The lhs is generated from the postconditions for theloop
statement (gcd.2.A and gcd.2.5) and the processing in the return
statement (gcd.3.1). The rhs is generated from the postcondition
for the procedure gcd.

B-4

II) PROOFS

A) The type information about the parameters a and b was used to
deduce the following:

a > 0, b > 0

The variable declarations added the following:

u = a, v = b

Substitution of a for u, and b for v shows

gcd(a,b) = gcd(u,v)

B) In order to prove the loop invariant, (gcd(a,b) = gcd(u,v)), it
must be demonstrated that it remains valid after each cycle of
the loop.

The series of steps through the loop produce the
following transformations to the variables u,v,w:

i) w = u mod v,
u = v,
v = w => v = u mod v

By substitution, the formula becomes:

(gcd(a,b) = gcd(u,v)) and (v > 0)} =>
{gcd(a,b) = gcd(v,u mod v))

The following facts about gcd are true:

a) gcd(x,0) = gcd(0,x) = x

b) gcd(m,n) = gcd(n,m) = gcd(n,m - n)

By induction,

ii) (m - q*n >= 0) => (gcd(n,m) = gcd(n,m - q*n))

The function mod is defined as follows:

If m,n > 0 then (by rules of algebra)

iii) m = n*q + rem, where 0 <= rem < n, and
m mod n = rem.

Given values for q, rem which satisfy iii,

u mod v = rem, and rem >= 0,

B-5

which satisfies the second part of the loop invariant.

Using the substitutions in i, and the results
in ii and iii,

gcd(v,u mod v) = gcd(v,rem)
= gcd(v,v - q*u)
= gcd(v,u)
= gcd(u,v)
= gcd(a.b).

C) In order to show:

{(gcd(a,b) = gcd(u,v)) and ~<v > 0)} =>
{(gcd(a,b) = gcd(u,v)) and (v = 0)}

It suffices to show

~(v > 0) => (v = 0)

Since after each cycle of the loop,

v = u mod v,

By iii, (v >= 0), and since, ~(v > 0) => (v <= 0),

(v >= 0) and (v <= 0) => (v = 0).

D) At the termination of the loop, the variable v = 0, and the
return value of the function is u. The post condition {r(gcd) =
gcd(a,b)), can be proved from the following substitutions of
values:

gcd(a,b) = gcd(u,v)
= gcd(u,0)
= u
= r(gcd).

Thus the return value of the function is the greatest common
divisor of u and v, which proves the postcondition for the
function gcd. Therefore the function gcd is partially correct.

Ill) In order to demonstrate the termination of gcd, it suffices to show
the termination of the loop. The loop will terminate if (v <= 0).
Notice that after each cycle,

v' = u mod v,

B-6

which by iii implies

v' < v

where V is the value of v after one cycle of the loop. Since b is
finite and initially v = b, it will take at most b steps before v =
0. Therefore the function will terminate.

IV) Since gcd is partially correct, and terminates, it is totally
correct.

B-7

GLOSSARY

ATOS

BTOS

COS/NFE

ETL
E-HDM

FDM
FTLS

HDM

ITP

JSS

KVM

lhs

MLS

NCSC

OS

PDL

rhs

STPE
STOS
STOF

TCB

VCG

Ada-to-SPECIAL

Bubble-to-SPECIAL

Computer Operating System/Network. Front-End

Endorsed Tools List
Enhanced HDM

Formal Development Methodology
Formal Top-Level Specification

Hierarchical Development Methodology

Interactive Theorem Prover

Job Stream Separator

Kernalized IBM VM

Left-hand side

Multi-level Secure

National Computer Security Center

Operating System

Program Design Language

Right-hand side

Secure Transacting Processing Experiment
Source-to-SPECIAL
Source-to-Formula

Trusted Computing Base

Verification Condition Generator

G-l

